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4.2.1 AIRS Atmospheric Layering Grid
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FIGURE 4.2.3: AIRS-RTA MODEL PRESSURE LAYER STRUCTURE. (NOTE: LAYER NUMBER
ISINVERTED IN THIS FIGURE COMPARED TO THE TEXT.)

The atmospheric pressure layering grid for the AIRS-RTA model was selected to
keep radiative transfer errors below the instrument noise. Grid characteristicsarea
function of the spectral region(s) of observation, the instrument resolution, and
instrument noise. The speed of the final fast transmittance model will depend on the

number of layers, so excessive layering should be avoided.

Line-by-line simulations indicate some channels need a top layer with pressures as
small as 0.01 mb, an altitude of ~ 80 km. The region of primary importance to AIRSis
the troposphere and lower stratosphere, where layers on the order of 1/3 of the nominal 1
km vertical resolution of AIRS retrievals are desired. Smoothly varying layers facilitate
interpolation and avoid large changes in layer effective transmittances. The following

relation defines the pressure layer boundaries selected for AIRS:

R =(a®+bi+c) (4.2.4)
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where P isthe pressure in millibars; i is the layer boundary index and ranges from 1
to 101; and the parameters a, b, and ¢ were determined by solving this equation with the
following fixed values: P, = 1100 mb, P, = 300 mb, and P, = 5x10° mb. The 101
pressure layer boundaries in turn define the 100 AIRS layers. These layersvary
smoothly in thickness from several tenths of a kilometer near the surface to several
kilometers at the highest altitudes. Figure 4.2.3 displays a plot of this atmospheric layer

Structure.

4.2.2 Fast Transmittance Modeling

Over the years, a number of fast transmittance models have been developed for
various satellite instruments [McMillin and Fleming, 1976; Fleming and McMillin, 1977,
McMillin et a., 1979, 1995; Scott and Chedin, 1981; Susskind et al., 1983; Erye and
Woolf, 1988; Chéruy et al., 1995]. However, some of these models only have been
applied to the microwave region where the measured radiances are essentially
monochromatic and easier to model. AIRS required amajor new effort in the
development of its RTA, some of the details of our model in its early stages can be found
in Hannon et al. [1996]. The AIRS-RTA model has already been adopted by the
EUMETSAT IASI Science Team (private communication, Marco Matricardi , ECMWF),
and for GOES applications (private communication, Paul Van Delst, University of

Wisconsin).

The AIRS-RTA most closely follows Susskind et a. [1983] by parameterizing the
optical depths rather than transmittances for channels where the influence of water vapor
issmall. Channels sensitive to water vapor are modeled using a variant of the Optical
Path TRANsmittance (OPTRAN) algorithm developed by McMillin et al. [1979, 1995].
The AIRS infrared fast model is thus a hybrid of both Susskind’ s approach and
OPTRAN.

The AIRS-RTA model actually produces equivalent channel averaged optical depths,
k's, which are related to the layer transmittances, t 's, by t = exp(-k). The optical depthis
the product of the absorption coefficient and the optical path. For AIRS, afast model for

k is much more accurate than a model that directly returnslayer t 's. k's are computed for
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each of the 100 atmospheric layers used for AIRS radiative transfer. The current AIRS-
RTA model allows water, ozone, methane, carbon monoxide, carbon dioxide, the
temperature, and local scan angleto vary. All other gases are treated as ‘fixed' gases.
These gases are “fixed” in the sense that we only need to parameterize their dependence
on temperature, not amount. Although the observed radiances are primarily sensitive to
temperature viathe Planck function, the temperature dependence of the transmittancesis

also important.

The following discussion outlines the development of a parameterization of the
convolved layer transmittances as a function of the atmospheric state. Most of the
complications of this parameterization arise from the loss of Beer’s law, which forces us
to introduce terms in the transmittance parameterization for a given atmospheric layer
that depend on layers above the particular layer under consideration. These
parameterizations, which are functions of the atmospheric profile, are derived from least-
squaresfitsto a statistical set of atmospheric profilesin order to ensure that we can
faithfully produce the appropriate transmittances under all atmospheric conditions. We

call this statistical set of profiles our “regression profiles’.

4.2.2.1 Breakout of Gases

Once the atmospheric layering grid and regression profiles (see later discussion) are
selected, the monochromatic layer-to-space transmittance can be calculated. The gases
are distributed into sub-groups that are either fixed or variable. The details of how the
transmittance model simultaneously handles several variable gases is somewhat
complicated and beyond the scope of this document. For simplicity, thisdiscussionis
restricted to fixed gases (F), water vapor (W), and ozone (O). The breakout of the other
variable gasesis similar. The monochromatic layer-to-space transmittances for the 48
regression profiles are calculated for each pressure layer, grouped into the following three
sets, and convolved with the AIRS SRF,

Py =ty (fixed)
FOy | =ty (fixed + ozone) (4.2.5)
FOWy | =ty | (fixed+ ozone +water)

33



AIRS Level 2 Algorithm Theoretical Basis Document Version 2.1

Water continuum absorption is excluded since it varies slowly with wavenumber and
does not need to be convolved with the AIRS SRF. In addition, separating out the water
continuum improves our fit of the local line water transmittance. Later, the water

continuum is factored into the total transmittance as a separate term.

For each layer |, the convolved layer-to-space (¥ ,1) transmittances are ratioed with
transmittances in the layer above, | - 1, to form effective layer transmittances for fixed
(F), water (W), and ozone (O) asfollows:

eff _ Pyl

i Fe o

off = v Fy (4.2.6)
FOy .1~ Fyj-1 a

ar _FOWy,  FOy,
FOWy ;.1 FOy -1

Forming these ratios is the above manner reduce the errors inherent in separating the
gas transmittances after the convolution with the instrument spectral response function.

Thetotal effective layer transmittance can be recovered as follows,

FOW.
Fow o = pef « offf « yeff = ¥

FOWy -1 (4.2.7)

The convolution of a product of termsisin general not the same as the product of the
terms convolved individually. However, the above formulation guarantees the product of
all the layer transmittances from layer | to ¥ exactly returns FOW, ., if the layer
transmittances are exact.

The zeroth layer transmittance (i.e. when | - 1 = 0) istaken to be exactly 1.0. The
negative logarithm of these layer effective transmittances is taken to get effective layer

optical depths,

Kiixed = - IN(Fest )
Kyater = - IN(Wets ) (4.2.8)
Kozone = - |n(oeff)

34



AIRS Level 2 Algorithm Theoretical Basis Document Version 2.1

which become the dependent variables in the fast model regression.

4.2.2.2 Predictors

The independent variables in the fast model regression, called the predictors, are a
set of variables relating to the atmospheric profile. The optimal set of predictors used to
parameterize the effective layer optical depth depends upon the gas, the instrument SRFs,
the range of viewing angles, the spectral region, and even the layer thicknesses. In short,
no one set of predictorsislikely to work well in every case. Finding the set of predictors
which give the best resultsis, in part, amatter of trial and error. However, there are some

general trends.

For an instrument such as AIRS with thousands of channels, it is difficult to develop
individual optimal predictors for each channel. The AIRS-RTA uses seven sets of
predictors, each corresponding with a subset of channels. These sets of predictors were
determined by extensive trial and error testing, as well as consideration of the relative
importance of the variable gasesin each channel. Supplemental sets of predictors are
used for OPTRAN water, the water continuum, and variable CO.,.

Theregression is prone to numerical instabilitiesif the values of the predictors vary
too greatly. Consequently, we follow the usual practice of defining the predictors with
respect to the values of areference profile, either by taking aratio or an offset. Thereis
also adanger of numerical instability in the results of the regression, due to the
interaction of some of the predictors. Sensitivity of the output to small perturbationsin
the predictorsis avoided by systematic testing, but there are practical difficultiesin
detecting small problems since we are performing on the order of 1 million regressions.

As an example, the predictors for the fixed gases for one of the seven sets are shown:

Da 2)a®  3)aT,
Hat? 5T,  6)T? (4.2.9)
nar, 8)al/T;
where ais the secant of the local path angle, T, isthe temperature ratio T e/ T eterences

and T, is the pressure weighted temperature ratio above the layer
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[ SURFACE J

Land Fraction > 0.97
|[LAT| >=42

YES NO YES AND — NO
DF1 >=0.45 1
TYPE =
compute WATER
TYPE = YES — NO— seawater
GLACIER I emissivity at

NO:

freezing l
TYPE = Compute
SNOW Weighted
— NO Average of Land
and Seawater
Brightness
YES
\ 4

TYPE = TYPE =
FIRST-YEAR MULTIYEAR
ICE ICE

—

YES g Estimate Ice
Concentration

v ;

TYPE = Compute Weighted
DRY LAND Average of Ice and
Seawater Brightness

v

l Subtract Land Fraction
from Ice Concentration

Use a priori Emissivity for Type to
Compute Surface Brightness l

|
I
( RETURN )

FIGURE 5.1.4 SURFACE CLASSIFICATION ALGORITHM

Thus the surface model takes a baseline Qg and adds or subtracts a smooth function
of frequency, to correct for surface roughness, for errorsin the dielectric constant model,

for amis-classification of the surface, etc. For example, it was found that (4) could
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approximate a blackbody surface (Qg = T) to within 0.5% at all AMSU and HSB
frequencies, even when Qso(n) was computed for seawater, if s=1.2 and
Ro, To,and Ty were adjusted to appropriate values for a given temperature. The

discussion in Grody (1988) suggests that a function such as (4) is capable of

approximating the emissivity of awide variety of surfaces.

Theretrieval algorithm fixes s at the value 1.2 and treats R, Ty,and Ty as

uncorrelated free parameters for which it solves, as described below. Mean values are set

to

2l
I

5

0 3-
0 (5.1.7)
0

—1 -1

(0]
¥
and variances are set to

Sg, =2.25
Sr, =100 (Kelvin)® (5.1.8)
Sy, =100 (Kelvin)?

5.1.2.2 Atmospheric Moisture and Condensation Model

M easurements of brightness temperature at the HSB frequencies are aresult of the
vertical profile of atmospheric opacity relative to temperature and hence do not by
themselves distinguish, at any given altitude, between opacity due to water vapor and
opacity dueto liquid water. However, the physics of water vapor condensation add some
apriori information or constraints. Cloud coverage is parameterized asin the stratiform
condensation model of Sundqvist et al. (1989), where arelative humidity threshold
determines the onset of condensation. If the observing instrument had infinitesimal
horizontal resolution, an appropriate threshold would be 100% relative humidity.
Although the water vapor profile is saturated within the cloudy part of thefield, itis
assumed that the condensation process is not spatially resolved, hence the threshold is
less than 100%. Currently, the threshold isHyy, =85%
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The H profile stored by the algorithm serves to define both the vapor and cloud
liquid water density profiles, asillustrated in Figure 5.1.4.

p /CLP,

. B | | | | | |
B 20 48 6@ 82 100 120 140

H, percent

FIGURE 5.1.5 WATER VAPOR (I ) AND CLOUD LIQUID (r ) DENSITIESAS FUNCTIONSOF H

The average vapor density in the field of view is

Ir §[H/100] if HEH

ry ='|'.rs[(1oo- Hen)(2b - b2)+Hcth]/1OO if Hogy < HE (200 - Hegp ) (5.1.9)
|
frs if H3 (200 - Hegy)

and the liquid water density averaged over the field of view is assumed to be given

by

" :‘I;O IfHEHcth (5110)
L7iC rgb if H>Hyy, "
In the above, r . is the saturation value of vapor density,
__H-Hgh
2(100 - Hetn) (5.1.11)
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and C| isapreset constant, currently 0.02. Note that when H £ H ,, H is equal to
relative humidity, but H can take values > 100% in cloudy regions.

The saturation vapor density is computed from the temperature profile. Saturation
vapor density is calculated with respect to liquid water (by extrapolation) even when the
temperature is below 273 K, because ice clouds are not considered within the context of
thisalgorithm. (Absorption from ice is much less than from liquid water, and scattering
isnot included in the radiative transfer formulation.) This model therefore allows

supercooled liquid water and water vapor greater than the saturation value over ice.

5.1.2.3 Estimation of Surface Brightness and Atmospheric Moisture

This part of the algorithm is based on retrieval methods described by Wilheit (1990),
Kuo et al. (1994), and Wilheit and Hutchison (1997). It uses the four channels of HSB
and channels 1, 2, 3 and 15 of AMSU. The HSB measurements are weighted averages
over 3x3 gpatial arrays which approximate the AMSU field of view. The H profile and
the three surface brightness parameters R, Tp,and Ty can be concatenated into a vector

Y . For small departuresof Y from an existing estimate Yoy, measured brightness

temperature Qs iS assumed to be related to the true Y profile by

Qobs = Q +WY[Y " Vesty 1] te (5.1.12)
where Q is abrightness temperature vector computed from the current values of
temperature, moisture, and surface brightness, (WY )i P = 1Qi/ Y j and e represents

unknown measurement errors. It follows from (4) and the chain rule for differentiation

that the matrix elements of W, corresponding to the surface parameters are equal to

2

1Q/1R, = (TY/1Qs) R(n) (Ty- Ty ) (Ry +R(N)) (5.1.134)
1Q/ 1T, = (1Y 1Qs) Ro (Ro +R(n)) ™ (5.1.13b)
/1Ty = (TQ/1Qs) R(n) (Ry +R(M))™* (5.1.13c)

where, from (5.1.3),
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ﬂQ/ﬂQs = t(l' %ky/Ts)_

(5.1.14)
The elements of W, corresponding to H values are
E:C;- wﬂk . ﬂrv+gﬂr|‘9,
™ &, ™H CfHo (5.1.15)

inwhich G = 1Q/fk where k represents the opacity of thelayer,and g = Tk r | .
Gisequa to theintegral over an atmospheric layer of the function G(h) for which an
expression is given by Schaerer and Wilheit (1979). The rapid transmittance algorithm
computes the coefficient gin the small-droplet (Rayleigh) approximation. Hence, itis
intended to be applied only to non-precipitating cloud situations. A quadratic model is

used to compute the opacity of water vapor:

k="Dbr,+br \2, + other contributions; (5.1.16)
hence
Tk _ b +2bor, +... (5.1.17)
firy
where

01 = BT vy Test) - Dol veg (5.1.18)

b, =db/dr, (5.1.19)

The coefficientsb and db/dr ,, are computed by the rapid transmittance algorithm

using the temperature profile retrieval and the initial moisture profile. Asaconsequence

of (5.1.9-11), r %H and "L g depend on H as follows:

It /100 if HE Hey
|
11{—\' =irg(1- b)/100 if Hgp <H £(200- Hypy)
.
70 if H3 (200- Hp)

(5.1.20)
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fr, 10 if HE Hep

=1 .
TH §7CLrs/2(100- Hyyy) if H>Hey, (5.1.21)

The estimate of Y is obtained by Newtonian iteration (see Rodgers, 1976), except that
Eyre's (1989) method of damping is used to avoid large relative humidity increments,
because of the nonlinearity of the problem:

—_ _ —_ —_ —_ T -
Yesty = Yesty.; = A Yest, 1 - Yesto| ¥ dSyWy Xy (5.1.22)

in which \?esto contains the a priori mean parameter values, Sy istheapriori

covariance matrix of Y , superscript T indicates transpose, X y is the solution vector to

- S ) )
[de Sy Wy +Se] Xy =Qops- Q + Wy d|Yeg ;- Ve, (5.1.23)

where S, is the (assumed diagonal) covariance matrix of e, and

EE (Qi - Q)£10K forall channels |

t0.1 otherwise (5.1.24)

Here d isascalar rather than amatrix asin Eyre' s paper. The parts of \?esto and

Sy corresponding to relative humidity were calculated from the TIGR profile ensemble
(Chedin et al, 1985) while the surface parts are given by equations (5.1.7-8). For the
moisture channels, the measurement error covariance S is the sum of contributions due
to instrument noise plus a diagonal error of (1.5 K)? which approximately represents
errorsin Q resulting from errors in the temperature profile retrieval. It isimportant to
note that because convergence is determined from the brightness temperature residuals,
which in turn are computed using the vapor and liquid column densities, the role of H in
this algorithm is only to introduce the a priori statistics and constraints.

The estimated H profileislimited by 1 percent from below and from above by avaue
which convertsto 1 g/m? liquid water density. This latter value isintended as an
approximate upper limit for non-precipitating cloud densities, and hence it will tend to
leave large brightness temperature residual s in situations of precipitation, and especially
when scattering is occurring (if these are not excluded by use of the precipitation flag).

After update of Y by (5.1.22-23), the water vapor and liquid water profiles are computed
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from (5.1.9-11), and surface brightness is computed for both window and sounding

frequencies from (5.1.4), using the new estimate.

5.1.2.4 Estimation of the Temperature Profile

The atmospheric temperature vector is augmented by T, which is considered to be
distinct from the air temperature near the surface. The measured Q's used in the
temperature profile retrieval are channels 4-14 of AMSU. Given an existing estimate
T’egn_ ,» the new estimated profileis to be determined from avector Qg of observed

brightness temperatures, which for small difference profiles T- Tog . isrelated to the

true profile T by

Qobs = Q +Wr [T - Testn_ 1] +e (5.1.25)
in which Q isthe brightness temperature vector that would theoretically be emitted
from the atmospheric profile described by T’estn_ L The sengitivities of the measured Q's

to the elements of the temperature profile vector constitute the observation matrix W- .

The elements of this matrix corresponding to the atmospheric part of the temperature

vector are given by

/T =K+GIk/ T (5.1.26)

where K is egual to the temperature weighting function as defined by Schaerer and
Wilheit (1979) integrated over the given atmospheric layer, G = {g/fk , and Tk/ 1T is
computed by the rapid transmittance algorithm. The second term on the right side of (26)

isasmall correction to the temperature weighting function.

The elements of W+ corresponding to Tg are obtained by partial differentiation of
Eq. (3):

hll®] _ t sty Qs
M 18 (5.1.27)
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The dependence on T is nonlinear here because Qgis considered to be aknown

input from the moisture algorithm. If the validity of achannel is zero, then the row of
W+ corresponding to that channel is set to zeros. The dimensions of the matrix remain

the same.

The covariance of the temperature vector was computed from the TIGR ensemble
(Chedinet al., 1985). The difference between Tq and the air temperature near the surface

(T1013) is assumed to have zero mean and standard deviation of 4 K. Thus, Tg hasa
larger variance, by 16 K2, than Ty;3, but its covariances with other levels are equal to

those of Typ;3.

Initialy, the temperature profile, including surface temperature, is set to a

climatological profile 'T’eﬂo which depends on latitude and season. The new, minimum-

variance estimate of T is obtained by Newtonian iteration (Rodgers, 1976, eqg. 101)

— _ —_ T —_
Testy = Test, +STWr X1 (5.1.28)

where Sy is the temperature covariance matrix, and X is the solution vector to

T B _ _ _ _
WTSTWT +Se XT :Qobs' Q +WT TEStn-l - Teao . (5129)

The error covariance matrix S, includes the effects of surface brightness uncertainty

and instrument noise.

5.1.2.5 Iteration Procedure and Convergence Tests

After the temperature profile is updated using (28) and (29), the algorithm returnsto
the moisture and surface-brightness section for another iteration of (22) and (23), using
weighting functions computed for the updated temperature and moisture profiles.
Convergence is tested separately for the temperature channels and for the
moisture/surface channels; iteration of either part of the algorithm is suspended when one
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of the following conditions is met : (1) the computed brightness temperature vector Q

meets the closure criterion
N e -0
aMW‘f'- £ Ng, (5.1.30)
]
1

where DT; istheinstrument noise on channel i and N g isthe number of valid
elementsin Qgy,; Or (2) when successive computations of the left side of (30) change by
less than 1% of the right side, for the temperature channels, or 2% for the
moi sture/surface channels; or (3) when the number of iterations exceeds a preset limit,
currently 12 for the temperature channels and 16 for the moisture/surface channels.
Typically, iteration of the temperature profile ceases after one or two iterations, but the

moisture profile often requires six or more iterations.

If the mean square of brightness temperature residuals for the HSB channelsis
greater than a preset threshold value, then an ice scattering flag is set at all altitudes for
which clouds are present and the temperature estimate is below 273 K. The scattering
threshold is currently set at 64 (i.e., 8K rms per channel).
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5.2 Cloud Clearing

521 Local Angle Adjustments of AIRS Observation
The cloud-clearing algorithm assumes that the observed AIRS footprints falling
within the composite AMSU retrieval footprint differ only in the cloud amount. Other
parameters, such as the viewing angle, are assumed constant over the 3 x 3 array of AIRS
footprints being used. This meansthe 9 AIRS footprints at 3 different zenith angles () )
must be adjusted to a common central zenith angle (j cen) before cloud clearing is

attempted.

The coefficients of the correction are based on synthetic regression, a processin
which regression coefficients are generated using radiances that are ssmulated for arange
of cloud conditions and profiles that cover the expected atmospheric range. AIRS
radiances are calculated for each of the 90 AIRS viewing angles and AMSU radiances are
calculated for the AMSU footprint viewing angle. Noiseis added, but care must be taken
that it be treated properly. The radiances being calculated are an attempt to simulate the
measurement that would have been observed if the viewing angle was different. Thus all
other factors, including the noise, do not change with angle. What this means for the
simulation is that the added noise is random over the set of profiles and for each channel,
but is constant over the viewing angle. In other words, once the noise is determined for a
channel and a profile, that same noise is used for all 90 AIRS viewing angles. It must
only be constant over the 3 viewing angles that cover each AMSU footprint, but it is

easier to keep it constant over al 90 spots.

Let prof be the profile index, fp be the footprint number, n be channel frequency and
j bethe zenith angle, respectively; the noisy radiance for a given profile, footprint,

channel and local zenith angleis:

R(prof,fpp,j )= Ro(prof,fpnj ) +eprof,fpn) (5.2.1)
where R, (prof,fpn,j ) isthe noise free radiance, and e(prof,fpn) is the noise for

the particular profile, spot, and channel. The consequence of not treating the noise
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properly isto cause large errors in the predictants used to generate the coefficients, with a
corresponding adverse effect on the resulting coefficients. Many angle adjustment

procedures currently in use do not properly handle the instrumental noise.

In the following discussion, the term "weighting function” is used to denote the
contribution function that describes the region of the atmosphere being viewed by a
particular channel. The observed radiance for a particular channel changes with anglein
two ways. Oneisthat the weighting function peaks in a higher region of the atmosphere
when the angle moves away from nadir. The other is that the weighting function
becomes dlightly narrower. This occurs because, to afirst approximation, the magjority
contribution to the observed radiance for a particular channel arises within a confined
dlab of the atmosphere. When viewed at an angle, the lab is thinner in atmospheric
height. For the small angles under consideration, the second effect issmall. If the
weighting function peak for a channel israised dightly in the atmosphere, thereisalinear
combination of the given channel with nearby channels that, for agiven profile, provides
the same radiance at the observed angle as the given channel would have provided if
observed at nadir. The correction procedure employed here seeksto find and use that

linear combination.

For a given channel, regression coefficients are generated that give the changein
radiance as a linear function of observed radiances. Radiances are used rather than
brightness temperatures to avoid Planck equation calculations. The exponentiation
within the Planck equation is computationally intensive. Furthermore, an error can result
if alow temperature coupled with noise causes the calculated value to go negative. For
daytime conditions, the predictors are principal component scores of the eigenvectors of
the radiances plus the cosine of difference of the solar zenith angles between the AIRS
and AMSU observations. For nighttime conditions the predictors are the principal
component scores of the eigenvectors of the radiances. The additional term for daytime
conditionsis proportional to the change in solar energy falling on a horizontal surface due

to the change in viewing angle. Thisterm isimportant for the shortwave channels.
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In applying the angle correction, the first step isto normalize the observed radiances
by dividing by the instrumental noise for the given channel. The next step isto generate
the eigenvectors of the predictors. In practice, the regression uses the 45 principal
component scores for the 45 eigenvectors with the highest eigenvalues as predictors. Use
of the eigenvectors prevents the solution from becoming singular. For daytime, the

matrix of predictorsis given by:

€R,(prof,fpn,j u,
Xday = € ol e(n) ) + (COS(f )- Cos(f cen))u E
€ u (5.2.2)
for nighttime, the matrix of predictorsis given by:
_ €Ry(proffp, n,j )u,
Xnight - € e(n) u E
€ u (5.2.3)

where E denotes the matrix of eigenvectors and e(n) denotes the instrumental noise

for the channel. Once the predictors are available, the regression is given by:

Al ) = Colnj )+ S{ni JX() 524

where C(n,j ) denotes the vector of regression coefficients.

The vector of adjusted radiances may then be computed:

Ii(n,j )angle_adjusteg ﬁ(n’j )obs+'5‘(n’j ) (5.2.5)

where R(n,j ), denotes the vector of original measured radiances.

Separate coefficients are generated for day and night. Although the daytime
coefficients may be used to calcul ate the adjusted radiances at night, the errors that are
generated are of the same magnitude as those produced during the day and thus larger
than they would otherwise be. While the errorsin the daytime corrections are small,
nighttime corrections produced with nighttime coefficients are much more accurate. This
Is an important consideration because in daylight, the visible channels can be used to help

cloud detection. At night, cloud detection hasto rely on relationships between channels
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at different wavelengths. The increased accuracy for the short wavelength channelsis an

important factor in the ability to detect clouds.

522 Principles of Cloud Clearing
Infrared observations at most wavelengths are affected by clouds in the field-of-

view. Three basic approaches used for accounting for effects of cloudsin satellite remote
sensing are: 1) identify clear areas and only perform retrievals in those areas, with no
cloud correction needed; 2) use channel observationsin adjacent potentialy partially
cloudy scenes to reconstruct what the channel radiances would have been if the scenes
were clear, and use these reconstructed observations to determine geophysical

parameters; and 3) determine both surface and atmospheric geophysical parameters, as
well as cloud properties, from the radiance observations themselves. An example of the
first approach is given by Cuomo et al.(1993). Eyre (1989a, 1990) has used the third
approach in simulation by assuming an unknown homogeneous amount of black clouds at
an unknown pressure, and attempted it with real TOV S data as well (Eyre, 1989b). Our
approach, like that used in Susskind (1993), is of the second type and is an extension of
that used by Smith (1968), Chahine (1974), and Chahine (1977). This approach utilizes
satellite observed radiances, R; i, corresponding to channel i and field-of-view k, made

over adjacent fields-of-view. In this approach, there is no need to model the radiative and
reflective properties of the clouds. The only assumption made is that the fields-of-view
are homogeneous except for the amount of cloud cover in K different cloud formationsin

each field-of-view. R. .. theradiance which would be observed if the entire field of

iclr

view wereclear and R, 44 ,, the radiance which would be observed if the entire field of

view were covered by cloud formation ¢, are therefore assumed to have the same
respective values in each field-of-view. If the observed radiances in each field-of-view
are different, the differences in the observed radiances are then attributed to the

differencesin a ., the fractional cloudiness for cloud formation ¢ in field-of-view k.

Using the above assumptions, Chahine (1977) showed that the reconstructed clear-

column radiance for channel i, R. .. can bewritten as alinear combination of the

iclr?

measured radiancesin the K+1 fields-of-view, R, , . .R; 4, acording to
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RicLrR =Ry +h 1[Ri,1- Ri,K+1] +...hy [Ri,l- Ri (k+2) k] +.. -hK[Ri,l- Ri,z]
(5.2.6)

where h; hy are unknown channel independent constants, and K+1 fields-of-view

(FOV's) are needed to solve for K cloud formations. The fields-of-view are ordered such
that FOV 1 isthe clearest field-of-view based on observationsin the 11 mm window (the
field-of-view with the highest 11 nm radiances is assumed to be FOV 1) and FOV K+1is
the cloudiest. Thus h; multiplies the largest radiance differencesand hy the smallest.

Once h;  hg aredetermined, Equation (5.2.6) is used to produce the reconstructed clear

column radiances for all channels used in the retrieval process. The reconstructed clear
column radiances are then used when solving for the geophysical parameters. This
approach has been successfully applied to fields-of-view, assuming one cloud formation,
in the analysis of HIRS2/M SU operationa sounding data by several authors (McMillin
and Dean, (1982), Susskind et al._(1984), Susskind and Reuter (1985a) and Chahine and
Susskind (1989)) and is the method used by NOAA/NESDIS in production of their clear
column radiances used in generation of operational HIRS2/MSU retrievals (McMillin and
Dean, 1982). Chahine and Susskind (1989) show that retrieval accuracy, verified by co-
located radiosondes, does not degrade appreciably with increasing cloud cover, for
retrieved cloud fractions of up to 80%. Susskind and Reuter (1985b) have performed
simulations with two cloud formations and three fields-of-view for the AMTS instrument
-- an earlier version of AIRS (Chahine, et al., 1984), used in conjunction with MSU.

The key to determining optimal values of h liesisin the best estimation of ﬁi,CLR-

There are two basic approachesto this. The first uses regression-based relationships
between microwave channel brightness temperatures and AIRS clear column radiances.
Thiswill be referred to as the regression based approach. The second computes the clear
column radiances from a physical state, which is consistent with the microwave
radiances. Thiswill be referred to as the physically based approach. There are potential
benefits to each approach, depending on the conditions encountered, and both are tested
as to which performs optimally to produce clear column radiances. The regression based

approach has the advantage that it can be determined from a sample of clear radiances
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taken shortly after launch and produces cloud cleared radiances that are independent of
any errorsin the forward calculation procedure. Thiswill be particularly useful in the
early stages of operation after launch before the radiative transfer cal culations have been
optimized to account for detector characteristics and uncertaintiesin the forward model.
The physically based approach has the advantage that it can be iterated and take
advantage of the infrared channels as the solution improves with each iteration.

522 Physically Based Cloud Clearing

An improved physically-based methodology has been developed to account for
multiple cloud formations using the AIRS/AM SU/HSB instruments, for use in the final
product retrieval algorithm. This methodology is also used as part of the start up
procedure to produce cloud-cleared radiances used in the first product retrieval. The

methodology to determine hy isfirst presented for asingle cloud formation and then

generalized for use with multiple cloud formations.

523 Single cloud for mation with two fields-of-view

For one cloud formation and two fields-of-view, the reconstructed clear-column
radiance for channel i from Equation (5.2.6) is given by
RicLR =Ry + hl[Ri,l' Ri,z] : (5.2.7)

Given these assumptions, the value of h; isindependent of cloud spectral properties

and has the same value for all channels. h; iswrittenintermsof a; and a, as

aq

az-ay | (5.2.8)

hy =

where a; and a, arethe cloud fractionsin each field-of-view (Chahine, 1974). It

Is not necessary to know a; or a, to determine h;.

The determination of h is sequential and is done in a number of passes based on the

|atest estimate of the surface and atmospheric parameters. An expected value of Rj c| R

for any channel can be used to estimate h according to
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hi'y= ' (5.2.9)

where hin 1isthe nth iteration estimate of h, obtained from channel i, based on the

n" iteration estimate of the cloud-cleared radiance R r- Ri'c R iSobtained by using

the radiative transfer equation to compute the i channel radiance with the n pass
estimates of atmospheric and surface parameters. The genera iterative procedure
indexed by nis discussed later.

If the estimated temperature profileistoo warm (cold) over coarse layers of the
atmosphere, the estimated cloud-cleared radiances RinCLR aretoo high (low), and hﬂl is
too large (small). In performing HIRS2/M SU retrievals, Susskind et al. (1984) correct

potential biasesin the n" iteration coarse-layer temperatures by adjusting computed
brightness temperatures for the infrared channels used to estimate h. The adjustment is
based on the difference between the observed brightness temperature for an AMSU

channel sensitive to mid-lower tropospheric temperatures and that computed from the n'

iteration temperature profile. Thisin effect adjusted the n" iterative temperature profile
to be consistent with the observationsin asingle AMSU channel.

The superior sounding capability of AMSU, compared with MSU, is utilized to first
produce an AMSU-only retrieval of atmospheric temperature-moisture profile. Thisis
then used as theinitial guessto start the retrieval process, and in the first pass estimation
of h,. The AMSU retrieval is done before the cloud correction because AMSU radiances
are not affected significantly by non-precipitating clouds. The temperature retrieval
obtained from AMSU has the property that radiances computed from it agree well with
all AMSU channels and is unbiased over coarse layers of the atmosphere, though local
errors still exist. When used in the start up mode before the first product retrieval, (n=0),
the radiances are cal culated based on the microwave product state. 1n subsequent passes,
it isensured that state also agrees with the AMSU radiances.
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Using different IR channelsin Equation (5.2.9) resultsin different estimated values
of h;, dueto acombination of local errorsin the temperature profile, and channel noise

effects. Many channels are used to estimate h,in order to reduce potential errors. For the

case of asingle cloud formation, thisis accomplished by simply taking aweighted
average of h; ; over aset of cloud filtering channelsto get asingle value of h, asdonein

Susskind and Reuter (1985a) and Susskind et al.. (1993). Onceavalueof h,is
computed, the cloud-cleared radiances for all channels are reconstructed using Equation
(5.2.7).

If the denominator in Equation (5.2.9) is small, errorsin estimating the numerator are
amplified in the determination of h. Therefore, alarge contrast in radiance between the

two fields-of-view isimportant for cloud-filtering channels.

524 Channel selection for cloud filtering

Although some previous techniques (Chahine (1974), Halem et al. (1978), and
Susskind et al. (1993)) used the 15 nm longwave channels for cloud clearing and the
4.3 mm channels for retrievals, the rationale for use of only 15 nm channels for cloud
filtering neglected the effects of solar radiation reflected off cloud tops. When sunlight is
reflected off the surface and clouds, the scene can exhibit significant contrast in the
4.3 mm region, especially for low clouds. In addition, cloud effects on radiances can be
of opposite sign at short wavelengths than at long wavelengths. This change in sign eases
the distinction of cloud effects on the observed radiances from thermal effects of the clear
atmosphere. Therefore, it is desirable to include 4.3 mm channelsin the cloud filtering
set during the day. Furthermore, it is desirable to use the same methodology for both
cloud filtering and retrieval of geophysical parameters during the day and night. We
therefore use both 15 nm and 4.3 nm channelsto estimate h. The 15 nm and 4.3 nm
cloud-filtering channels are a subset of those used to determine the atmospheric
temperature profile. Window channels are more sensitive to clouds than atmospheric
sounding channels, but are also more sensitive to uncertainties in surface parameters.
Tthe methodology has been improved to include window channels in the determination of

h, weighted to reflect the uncertainty in the clear-column radiances. The same weighting
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procedure is used for al channels. The relative weighting of the 15 mm and 4.3 nm
channelsin the determination of h is done objectively and differs under daytime and

nighttime conditions as is described later.

525 Determination of h for asingle cloud formation

Figure 5.2.1 isaflow diagram for the cloud-clearing program.

Following Susskind et al. (1993), set

| (5.2.10)

where W, isaweight for channel i. An appropriate value of W, account s for

propagated errorsin h; resulting from instrumental and computational noise. For
example, channels more sensitive to clouds, with large valuesof | Rj 1 - R;j 2 |, receive

larger weight.
Equation (5.2.9) for i channels becomesin matrix form
SN 5 5 B n
W (Rdr - Rl) =W (Ry - Rp) h (5.2.11)
where W isan | x | diagonal weight matrix with weight W;; for channel i,

(ﬁ(rglr - |fe1) and (I?Ql- ?22) arel x 1 vectors, and h" isthe unknown. The standard

weighted least squares solution to this matrix problem is given by

-1

Tw Ry~ Re)U " (Ry- Re)' W7

n" =R Ro)' W (RY, - Ry

(5.2.12)

and reducesto
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2
o \n2 n o n
) ?Wii (Ri,l' R ,Q(Ri,clr' Ri,l) ?Wii (Ri,l' Ri,z) hj
h" = — : =1 — — (5213)
?W“ (Ri,l‘ Ri,z) ?Wii (Ri,l' Ri,z)

where hin isgiven by Equation (5.2.9). Equation (5.2.13) is analogous to Equation

(5.2.10), but in Equation (5.2.13), the contribution of the difference of radiancesin the
two fields-of-view to the channel weight is explicitly taken into account. Therefore W;

in this context represents any residual weight factors, such as effects of channel noise.
2
Susskind et al. (1993) used Equation (5.2.11), including in W; theterm [Qj 1 - Qj 2",

that is roughly proportional to |R;; - R; 12|2 for the 15 mm channels they used.
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Average rad ¢
into 3 FOVs

IR/MW surf ret

* I

MW & Strato-IR ret
to remove MW & Strato-IR
regression bias Temlo ret
Compute Compute
cloud height cloud height
and cloud frctions and cloud frctions

I '

1st cloud cleared rad 2nd cloud cleared rad
with error est. for h with error est. for h
and rejection criteria and rejection criteria
Compute Compute
noise covariance matrix noise covariance matrix
Tuning correction Tuning correction

FIGURE5.2.1 CLoUD CLEARING FLOW DIAGRAM. NOTE: THE FIRST PRODUCT EXEXUTES
THE CLOUD-CLEARING MODULE IN HIGHLIGHTED SEGMENTS ONLY WHILE THE FINAL
PRODUCT EXECUTES THE COMPLETE CLOUD-CLEARING PROCESS.

The above discussion is accurate as long as sources of channel noise are uncorrelated

from channel-to-channel. Under these conditions, an appropriate value of W; isinversely
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proportional to sources of noise. There are two sources of noisein Equation (5.2.11),

instrumental noise and computational noise. Instrumental noise is random and affects

Rj 1 and R;j 2. Computational noise affects RinCLR and are correlated channel-to-

channel. Inthe case of channel correlated noise, the appropriate equation is

-1 T -

MRy R) U (Re- Ro)' M YRR Ry) (5:2.14)

[ b BN )

where M isthe channel noise covariance matrix, indicati ng errorsin (F?&_R - Ile).

The iterative methodol ogy to determine cloud-cleared radiances consists of three
passes to determine h"(n=1,2,3), using three sets of conditions, to give F?ELR , inwhich

QELR and hence h" become increasingly more accurate in each iteration. Each pass has

n

itsown M, reflecting expected errorsin Ricr-

Rj 1. The noise covariance matrices

are modeled according to

N . TR; 2 - IR )
gt = N+ 18— ar) 7 T8 =1 gl el 64

! s s Ten, Teny,
ﬂRi ﬂRJ 2 ﬂRi ﬂRJ n 2 ﬂRi ﬂRJ 2
0 (e )T ol ) (g0} L (g
i 3 1) e e (O Fing g @)

(5.2.15)

where N is the observed noise covariance matrix (see section 5.3.8, and equation

.. A . n
5.3.33) and the remaining terms are contributions to errors in the computed value R; CLR

from errorsin estimated surface skin temperature, surface spectral emissivity, surface
spectral bi-directional reflectance of solar radiation, and temperature and moisture profile
respectively. The partial derivatives are determined empirically by computing the
radiance using the current estimate of each parameter and recomputing it after a small
changein that parameter. The profile terms are obtained by either shifting the entire
temperature profile by dT ( P or multiplying the moisture profile by (L + dy(P). In

Susskind et al. (1998), the uncertainties, such as dTS”, are specified so asto be indicative
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of the expected errors for that parameter in the n" iteration. These errors are predicted on
aprofile-by-profile basis for each pass by propagating the expected sources of error
through the retrieval processin the manner described in Section 5.4. A principle source
of retrieval error arises from errorsin the reconstructed cloud-cleared radiances. These
errors propagate into degraded estimates of all the variables shown in Equation (5.2.15).

5.2.6 Multiple Cloud Formationswith Multiple Fields-of-view
In order to solve for K cloud formations with unknowns h; . . hy, K+1 fields-of-
view are needed. A simple relationship between a, and hy does not exist for the case of
multiple cloud formations, nor isthe solution h; . . hy necessarily unique. For example,
consider a case of only one cloud formation with cloud fractions of 20%, 40%, and 60%

. . . . 1
in fields-of-view 1 - 3 respectively. h(l)

=1, Y =0and h{?=0, h{) =05 aretwo
solutions to the problem, as are appropriate linear combinations of these solutions, given
by

aho _ 5 6 o

1-+f(; ( )=

eho éh(2 g &Py (5.2.16)

The optimal solution provides the correct cloud-cleared radiances and does so with
the smallest values of h in order to minimize amplification of instrumental noise when
used in Equation (5.2.6).

Determining an optimal set of hy isanalogous to the determination for asingle
cloud formation. Using a set of | channelsto estimate K values of h, Equation (5.2.6) is

expressed as a set of linear equations in matrix form according to

HRIcLr- R110  @u1- Rika Rii- Rik - Rui- Ri26ah]s
‘Riclr- Roqt  GR21- R R21- Rogk -+ Rp1- Rpp=6
QRZ,CLR. R2,1+ - 21- Rok+1 2,1: 2K 21. 2,2 h2 (5217
(;,., . - (‘; . . . . g .n .
éRI'clr- Riz@  €Ri- Rika Ri- Rik - Ri-Ri28éhlg

or
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C"=DR", (5.2.18)

The solution to Equation (5.2.18) is given by

~ -1 -~ _
ﬁ“=(DTM'1D) DTm-1en (5.2.19)

where M isthe channel noise covariance matrix as givenin Equation (5.2.15).

N

. n n
Givenh ) Ri,CLR :

is constructed for all channels according to Equation (5.2.6). I;QI CLR
is used as the observation in the subsequent retrieval process. If the observationin a
channel is not sensitive to the presence of cloudsin the field-of-view, it is better to

average the observationsin al fields-of-view

nooo L TR 5.2.20

Thisis equivalent to defining separate values of h for channels that do not see

clouds, R 1 , and using them to produce R]

i CLR =" 1 i CLR for the appropriate

channels. Currently, channel i is considered not to be sensitive to cloudsiif

|Ri,1 - Rik +1| £3J2 Nj anditisincluded in a set of channels expected not to see clouds

given the retrieved cloud height.

The first product retrieval algorithm calls the first part of the composite cloud-
clearing package once, to provide the cloud-cleared radiance for inversion to thermal and
humidity profiles. Thefinal retrieval algorithm calls the complete composite cloud-
clearing package twice, providing cloud heights and cloud fractions in addition to cloud-

cleared radiances.

5.26.1 Contribution of cloudsto theretrieval channel noise covariance matrix

The basic retrieval methodology described in Section 5.4 requires a channel noise

covariance matrix M representing channel correlated errorsin the terms

('ii,CLR - R|n) and a§?j,cm - R,-”S where Rin is the radiance computed for channel i
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based onthen" iterative solution. The optimal solution for h minimizes the noise in the
cloud-cleared radiances. The channel noise covariance matrix is the sum of two parts,

resulting from noise in the reconstructed clear column radiances dlii with noise

covariance M , and noise in the computed radiances dRin due to uncertainty in the

parameters, with noise covariance M. M i = [dﬁd—TQT]_, is the expected noise covariance
1

matrix for the channel clear-column radiances. The noisein Ri,cLR obtained from
Equation (5.2.6) has two parts, arising from instrumental noise N;, and from cloud
clearing errors coming from errorsin hy, which may be correlated with each other.

Evenif the vector hywere perfect then
~ = NT 2% o 02 o 2 l:l 2 2
Mij =[dROR ] =Ngkl+ 8 hk ™ +&hg g N [A(hk)] (5.2.21)
] e k 7] k 0
In general, A(hk) is achannel noise amplification factor resulting from

extrapolating cloud contaminated observed radiances to cloud-cleared radiances.

Cloud-cleared radiances for those channels affected by clouds have an additional

error dueto errorsin h, giving the final result

M ij = [dlidli-r i = Nizj [A(hk)]2+ ij

DdhthDT] (5.2.22)

and where dhdh' isthe error covariance of h and D is defined in Equation (5.2.18).

If M, asdefinedin Equation (5.2.15), isindeed representative of the noisein the
determination of h, then

[dhth] :[D I\?I'lDT]_ ' (5.2.23)

where D in Equation (5.2.23) refers only to those channels used to determine h.

dhdh' istherefore based only on observed channel radiance differencesin the separate

fields-of -view and the modeled channel noise covariance matrix used to determine h,
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and henceis easily computed for a given profile and substituted in Equations (5.2.22) to

give M for channels affected by clouds.

In the special case for which channel i is determined to not "see" the clouds (i.e.,
stratospheric sounding channels or tropospheric sounding channels peaking significantly
above the highest cloud top), radiances in the k fields-of-view are averaged for the cloud-
cleared radiances. For these channels, the scene appears to be clear and effective values

of hcLr aredefined for “clear” channelsas hg r=- 1/(K+1). For these channels,

A(hCLR,k): ﬁ , Which isanoisereducer. For “clear” channel i,

~ 1

— 2 .

wherej isany other channel and d;; isthe Kronecker delta function.

Even if only 2 cloud formations exist, it is better to make use of the characteristics of
radiancesin all 9 fields-of-view than to arbitrarily divide the 9 spotsinto 3 equal area

fields of view as done by Susskind et al. (1998). There are numerous reasons for this.

~

Equation (5.2.6) extrapolate i:CLR from R; ; with coefficients h, . One desires

(1) Rj 1 tobeascloseto Ri,cLR as possible to minimize extrapolation,
(2) to maximize the contrast between different fields-of-view to have lower values of h,

and less noise amplification, and
(3) to use the average of many fields-of-view to minimize noise effects.

If, for examples, footprints 1 and 2, 3-7, and 8 and 9 each have roughly equivalent

scenes, it is better to group them accordingly to form the three fields-of-view.

5.2.6.2Selection of Optimal Fields of View

Rather than choose radiances for the warmest field-of-view to be the average of the
three highest radiance valued observations, N, is the average of nearly equivalent

observationsto give Rj 1 , where N, isvariable and scene dependent. Thisleaves 9-

N.=N; other fields of view (when dealing with observations in 9 spots) giving the
equation
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N
~ f
Ri=Ry + 8 Rig - Rig- 1) =Ry +&N DRy (5.2.25)

It is advantageous to take a linear combination of the remaining N; fields of view

Ri1 = & UkkeRi ke (5.2.26)
k,k¢

where U isdimensioned N, x N;. U is chosen so as to diagonalize [DTI\7I i 1D]

U ™M DU . | dj je (5.2.27)

The solution in this transformed space becomes

N
~ f
Ri=Ry * &Ry - Rig-lon) =Riy +&NDR; (5.2.28)
=1 R
where
A=U'Rand h=UR . (5.2.29)

The solution for h isgiven by

-1 -1 -1 -1 -1
h; = (DR&LR N “DRciR)jj (DRELRN "DReiR)j1 =1 j (DRGLRN “DRaLR)j1
(5.2.30)

n

where DR R IS (Rj, CLR "

Ry ). Cloud-cleared radiances are most easily

obtained in the untransformed space using Equations (5.2.30), (5.2.29), and (5.2.25).

If all N; eigenfunctions of U are used in Equations (5.2.28) and (5.2.30), then the

results would be identical to those in the untransformed space. The eigenvalues | j

provide information about the degrees of freedom in the observed radiances. Significant

eigenvalues correspond to different cloud formations in the scene, while small

eigenvalues arise from various sources of noise such as instrumental noise and non-

homogeneities in the clear portion of the scene. The solution is stabilized in transformed
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space by keeping only a subset of N, eigenvectors, which provide the N, optimal linear
combinations of observations in untransformed space.

The eigenvalues are representative of signal-to-noise in the solutions. Typical
eigenvalues for the first cloud formation are the order of 10000 and for the second, the
order of 1000. Subsequent eigenvaluesin cases with atwo cloud formations are typically

less than 100. Eigenvectorswith eigenvalues less than 20 are eliminated.

Aside from reducing noise and determining the number of cloud formations from the
data, transforming the fields-of-view provides a better treatment of the estimated noisein

the cloud-cleared radiances because the error in h; isuncorrelated with that in hjg. The

contribution to the channel noise covariance matrix arising from instrumental noise

N p d/2
v €1 Ns 5, o0 € -1,2Y
Mij=Nijg - @+ & hi)” +ahjdij +ed (DRik DRjk k) g
gra k=1 k™0 ek a

(5.2.31)
where | 'kl can be shown to be a statistical estimate of (d hi dﬂl) if Njj represents

the true noise covariance error. Hence, the details of the channel noise covariance matrix

are not needed to compute M.

The accuracy of | 'kl is predicted from the subset of N cloud clearing channels.
Calculate the RMS of the radiance residuals as the difference between the cloud cleared

radiance estimate, RECLR , and the cloud cleared radiance value, FNQi CLRoverthe N
cloud clearing channels. The prediction is accurate if this matches § i M ii- Thecase

dependent uncertainty in the noise covariance is given by the difference of these two
values

N¢
' ~ 2
& (Rlcr- R -

Z

1 C

de2=—
NC

Mii - (5.2.32)

1 e

1
Ne j=1
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To produce a more accurate estimate of the channel noise covariance matrix, an
additional uncertainty is added to the extrapolation uncertainty estimate, dh, if de? is
positive. The best way to add the uncertainty isto only modify the predicted value of
dhy, since higher order dh j terms require more knowledge of the interaction

extrapolation parameters for multiple cloud formations. Therefore, only dhy is

modeified if de? is positive, by adding aterm d¢_hk asfollows

dhy =0 for k>1

dh2 = dsi +0012 fork=1 (5.2.33)
- 1

where S, isthe RMS channel contrast in transformed space

Fo -t '\z‘lél(DR ) (5.2.34)
N & (DR . 2.

Ccij=

The additional factor of 0.01 isto allow for anull space error between the surface
retrieval and the cloud clearing parameter retrieval. Thetotal error estimate for the cloud

cleared radiances for al the channelsis now expressed as

- 2, & 1, e 28
Mijj =Njj ¥A"djj + 52 DRik DRk (I | +d¢lf)] .
B — — (5.2.35)
where A is the noise amplification factor shown in the first bracket in Equation
(5.2.31). The ability to average N, spots to produce radiances for field of view 1
significantly reduces A. The use of the truncated transformation matrix U also lowers the

noise amplification factor, aslow values of | K which would contribute to large values of

hk have been eiminated.

From Equations (5.2.31) and (5.2.35), it is apparent that increasing N, is desirable.
On the other hand, it is also desirable to maximize contrast between the fields-of-view to

minimize the values of h and extrapolate least from Rj;. The field-of-view containing
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the highest radiance in a select 8 nm cloud filtering window channel is always included
in Ry. In addition, for each other field-of-view, the standard deviation is evaluated over

all cloud filtering channels of the difference between this radiance and that in field-of-

view 1
, N
é Nc 20
l [o] i 1' R o
Ss=er a——= 0 =, (5.2.36)
aNc =1 i 0

and select the radiances in fields-of -view to be averaged with R 1 into R; 1 if s¢ <

0.30r sg<0.2MAX (s ). If morethan three fields-of-view satisfy this criterion, the
three with the lowest standard deviations are selected, so asto maximize N, at 4. A

special case arisesif all eigenvalues | K are lessthan 20. Here, no clouds are present and

set N, = 9, averaging radiancesin all 9 spots.

5.2.6.3 Regression Approach to Find F~2i,C|_R

An alternative to computing Iii'CLR is to use regression-based rel ationships between

AMSU observations and clear column radiances for a set of AIRS driver channels. These
relationships are found shortly after launch by identifying areas where no clouds are

thought to be present in any of the 9 fields-of-view. Such areas are identified when only

low eigenvalues of (D" M~ D) exist [see Equation (5.2.27)] and the values of R?CLR

computed physically are very close to Iii,CLR . The regression-based approach depends

on driver channels. These are channels for which an estimate of the clear column
radiance is obtained from the microwave measurements. These channels are selected in
the following manner. For each of 10 atmospheric microwave channels (5-14), the four
AIRS channels with the highest correlation with a particular AMSU channel are selected.
Although only one channel is needed, four are selected to reduce the noise in this crucial
step. Then angle dependent regression coefficients are generated, based on observations
in the clear cases, to predict each of these 40 AIRS channels from the 10 AMSU
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channels. The predicted cloud-cleared radiances become the values of R; CLR usedin

subsequent inversion of level 2 parameters.
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5.3 First Product

531 AIRS First Guess Regression Procedure

An eigenvector global regression procedure provides fast and accurate initial guesses
for temperature and moisture profiles as well as surface emissivity. All independent
AIRS radiances are preprocessed by the cloud-clearing module described in the last
section. Following the approach of Smith & Woolf (1976), eigenvectors from a
brightness temperature covariance matrix, calculated over some dependent training
ensemble, are used as basis functions to represent the AIRSYAM SU/HSB radiometric
information. Eigenvectors of covariance matrices are commonly referred to as
Empirical Orthogonal Functions (EOF’s) in the literature, a convention that will be
adopted throughout the remainder of this section. Because of the large number of
channels measured by AIRSYAM SU/HSB, the eigenvector form of regression is crucial
for exploiting the information content of al channelsin a computationaly efficient form.
By representing radiometric information in terms of a reduced set of EOF' s (much fewer
in number than the total number of instrument channels) the dimension of the regression
problem is reduced by approximately two orders of magnitude. Another advantage of
using areduced set of EOF sisthat the influence of random noise is reduced by
elimination of higher order EOF s which are dominated by noise structure. It should be
noted that if all EOF s are retained as basis functions the eigenvector regression reduces
to the ordinary least squares regression solution in which satellite measurements are used
directly as predictors. The mathematical derivation of the EOF regression coefficientsis

detailed in the following sub-sections.

53.2 Generating the Covariance Matrix and Regression Predictors
A training ensemble of temperature, humidity, and ozone profile data are used to
generate brightness temperatures for al AIRSYAMSU/HSB channels. The deviations of
the brightness temperatures from their sample mean are stored in the matrix DQq,4,,, @
matrix of dimensions [nchan x nsamp], where nsamp is the sample size of the training

data set and nchan isthe total number of instrument channels. The brightness
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temperature covariance matrix from which the EOF s are derived is then generated as

follows:

1
nsamp

Qcov = DQTraidDQTrai r)T (5.3.1)

where superscript T denotes matrix transpose and the matrix Q,,, iS a square matrix
of order nchan. The diagonal elements of Q_,, represent the variance of the respective
channel brightness temperatures while the off diagonal elements represent the covariance

between pairs of channels. An eigenvector decomposition is performed on the matrix
Q. giving:

Q. =CGLG (5.3.2)

where Gisthe [nchan x nchan] matrix containing the eigenvectors, or EOF's, of
Q. Init'scolumns. L isthe diagonal matrix of eigenvalues, the first eigenvalue being
thefirst diagonal element, the second eigenval ue the second diagonal element etc. The
EOF s are ordered in terms of the amount of the total data variance each explains; the
first explains the most variance and each successive EOF explains progressively less of
the total datavariance. As discussed in the beginning of this section, some subset of the
total number of EOF sis best for capturing the information content of the radiometric
data while minimizing the effects of random measurement noise. For the purposes of
notation let m be the optimal number of EOF' s for describing the information content of
the covariance matrix from Equation (5.3.14). Considering the large number and
interdependent nature of the AIRSJAMSU/HSB weighting functionsit is reasonable to
assume that m << nchan, where m represents in some sense the number of independent
pieces of information available from the measurements. Experiments with
AIRS/AMSU/HSB simulated data have shown m = 40 to be optimal for capturing the
information content of the measurements from these three instruments. Only very small
improvementsin retrieval accuracy have been observed when using greater numbers of
eigenvectors. Once m is determined from experimentation those EOF' s are used as basis

functions to represent the original brightness temperature information in terms of
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expansion coefficients commonly referred to as principal components. First we express

DQ.4n @S an expansion of the EOF s asfollows:

DT 4o = dG +aG +---+al,Gy (533

where Dﬂ isthe jth column of matrix DQy,,,, and a{,ajz,--‘,arjn arethe

rain
corresponding m principal components for the jth sample. 1n order to solve Equation
(5.3.16) for the individual principal components recall that the EOF s élégém are

mutually orthonormal. That is:
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il fori=j

G- G={ 3.4
G- G 'fo forit j (5.34)

where (-) denotes the inner product of two vectors. Using the condition of
orthonormality and the distributive property of the (-) operator, each individual principal

component is expressed as.

al=prl. .G i=1.2-, mand

(5.3.5)
j :2’ -+, nsamp

53.3 Generating the Regression Coefficients
A standard least squares regression technique is used to generate regression
coefficients using an a priori training database such as an operational radiosonde match

file. Thefollowing regression model is used to generate the coefficients:

DV =CA,,, (5.3.6)

where DV isthe matrix of deviations of the predictants (temperature, moisture etc.)
from the training sample mean, A+, isthe [m x nsamp] matrix of principal components
calculated using Equation (5.3.5), and C isthe [n x m] matrix of regression coefficients

to be solved for where n is the total number of predictants. More specificaly:

gvll - vl V12 - vl Vlrmmp - \—/18
DV = g : : : : H (5.3.7)
é\/: - \—/n Vn2 - Vn Vnnmp - vn0
and,
€a, & ar
A, =€ Py 5.3.8
Train é ) , nsampu ( )
é'm am am O

where n = number of predictants (i.e. the number of temperature, moisture, and/or
emissivity/reflectivity points), nsamp = number of samplesin thetraining set, m =
number of principal components used and bars indicate averages over the training sample
Set.
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The least squares regression solution of Equation (5.3.6) is:

C=DVA’

Train

T -1
(ATrainATrain) (539)

where the T superscript denotes matrix transpose, and the -1 superscript denotes
matrix inversion.

534 Applying the Coefficients to I ndependent Data
Once the coefficient matrix, C, is calculated from equation (5.3.9) the coefficients
may be applied to independent data using equation (5.3.6). The matrix defined in
equation (5.3.20) would now contain deviations of the independent data from the training

sample mean. Mathematically, the application processis:

V=V+CA,, (5.3.10)

where V isthe[n x nobs] matrix of retrievals, V the training vector from equation
(5.3.7), Cisthe[n x m] matrix of regression coefficients from equation (5.3.9), and A
isthe [m x nobs] matrix of principal components calculated from the level 1B
observations. A . is generated using equation (5.3.5) where DQ,, is replaced with
DQ.. the matrix of deviations of observed brightness temperatures from the training

mean.

To account for off-nadir view positions the principal components in equation
(5.3.10) are adjusted to nadir. Thisisaccomplished by generating a priori coefficientsto
predict nadir principal components from off-nadir principal components (i.e. limb
adjustment). Limb adjustment is used only in the regression step. The physical retrieval

algorithms are applied to radiances at the given view angle.

535 Minimum Variance Physical Retrieval

Given a set of radiances, the objective of aphysical retrieval algorithmisto find a

realistic solution of geophysical parameters that will be consistent with those radiances.

The derivation begins with linearizing the radiative transfer equations (RTE) for

microwave and infrared about some a priori estimate. Thisisaccomplished by
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expressing brightness temperature or radiance (R; ) in equations (4.1.2) and (4.2.1) asa

function of the regression guess using a first order Taylor expansion such that:

N
SR+ A Ruqy, - \f) (5:3.11)

R,
k = 1ﬂvk

where R?isthetotal integrated radiance for frequency u computed from the

regression solution and the RTE, V, and VkO are the kth elements of the solution and
regression first guess geophysical parameter vectors, YRy, / TV isthe incremental change
of the radiance with respect to aincremental change in a particular geophysical parameter
(e.g. V,= temperature at 50 mb), and N is the number of geophysical parameters. The
value of Ry, /Vkiscomputed in amanner similar to Eyre (1989a) by differentiating the
numerical quadrature form of the RTE with respect to the geophysical parameters (see
section “ Computation of the Kernel Matrix”). Currently the geophysical parameters
solved in the physical retrieval include surface and atmospheric temperature and

moisture. The above equation is re-expressed in matrix notation as,

R=Rg+A(V- Vo) (5.3.12)

where R represents the vector of cloud-cleared satellite observations for all retrieval

channels, Iio represents the vector of radiances computed from the regression first guess

for all retrieval channels, V and \70 represent the solution and regression first guess

geophysical parameter vectors, and A, commonly referred to as the kernel matrix,
contains the partia derivatives of radiance with respect to each of the individual
geophysical parameters and for each of the retrieval channels. A minimum variance
solution for V isemployed in theretrieval process. Minimum variance has been used in
the NOAA TOV S operational retrieval system since 1988 (Fleming et. al., 1986;
Goldberg et. a., 1986). There are an infinite number of ambient atmospheric states that
will satisfy the RTE to within the system noise (i.e. instrumental + cloud-clearing +
transmittance). The minimum variance solution uses a priori constraints, in the form of a

regression estimate and covariance matrix of regression errors, to produce realistic
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atmospheric profile solutions minimizing the average squared-error over an ensemble.
The iterative matrix form of the solution (Rodgers, 1976):

Vo =V + (AINA, +S Y AINH R-R)-AL (% - )} (5313)

where V__, isthe n+1 iterative estimate of the retrieved temperature or moisture

n+l
profile, V_isthe n-th iterative estimate of the retrieved profile,V, isthe initial guess
profile of temperature or water vapor mixing ratio, Ris the vector of satellite observed
radiances, ﬁn Is the corresponding vector of radiances computed from the most recent
iterative solution, A, isthe kernel computed from the most recent iterative solution, N is
the estimated radiance (observation) noise covariance matrix, and S is the estimate of the
background error covariance matrix between the truth and the retrieval estimate.

Superscripts T and -1 denote matrix transpose and matrix inversion, respectively.

Temperature, surface temperature, and water vapor are retrieved separately rather
than simultaneously with the temperature retrieval s preceding the water vapor retrieval.
The temperature profileis retrieved first using channels selected from the 15mm and

4.3mm bands that are relatively unaffected by water vapor. By first improving the
temperature retrieval, the subsequent H,O retrieval will be more accurate because the

temperature component of the signal in the water vapor channels will be better accounted
for. Both retrieval steps can be iterated, however experiments with simulated data have
shown that often theinitial guess departure from the truth isin the linear regime such that

only oneiteration is required.

5.3.6 Expressing the Retrieval Solution in more Computationally Efficient
Form

Theretrieval solution in equation (5.3.13) can be expressed in amore
computationally efficient form using eigenvector methods. Because Sin equation

(5.3.13) isareal symmetric matrix it may be written:

S=G.G' (5.3.14)

98



AIRS Level 2 Algorithm Theoretical Basis Document Version 2.1

where Gisan [n x n] orthonormal matrix, L isan [n x n] diagonal matrix, and
superscript T denotes matrix transpose. Substituting equation (5.3.14) into equation
(5.3.13) and making use of the properties of eigenvectorsit is easy to show that equation
(5.3.13) can be written in the following equivalent form,

DV = G(GTAIN'lA G+ L‘l)' 1GTAlN'l{ DR- An(Vo - \7n)} (5.3.15)

The [n x n] matrix G contains the n orthonormal ‘eigenvectors of Sinit’s columns

and the diagonal matrix L containsthe n ordered ‘eigenvalues of S. More specifically

e u
a1 2 n
TEERLI LA
2 I I
L=8% T2 0 g =07 95 .. 92 (5.3.16)
é: -0y € : U
~ A Ny
éo 0 I'hi g!i]- gﬁ gg,rllij
& 6 &g
where [G, G, ..., G] arethen eigenvectorsof Sand [l ,, | ,, ..., | ] arethe

corresponding eigenval ues.

The dimensions of the matrix to be inverted in equation (5.3.15) is reduced by
truncating the matrices of eigenvectors and eigenvalues. If we retain m of then

eigenvectors (m < n) then equation (5.3.15) is rewritten:

DV= é(éTAIN'lA G+ v‘v['l)' 1E;TAIN'1{ DR - An(Vo - \7n)} (5.3.17)

where W isatuning parameter, and the definition of wL ! and G are asfollows:

&/ly 0 0 - 0 @ ¢ U

60 Wiy 0 0 &t of ("0

—~1 a _ . ~ égl g2 gmﬂ
wL "=€ 0 0 W/l3 U and G=22 92 .. 827
& . . . G €: : U

Co . : . 0 i A1l 2 mlj

§0 0 0 Wimt L oy

& mU q & GnH
(5.3.18)
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Notice that the dimension of the matrix to be inverted in equation (5.3.17) is[m x m]
compared to the larger [n x n] matrix in equation (5.3.15). In addition to reducing the
number of floating point operations, truncating the eigenvectors may also filter out
unwanted noise in the retrieval process by excluding higher order terms containing

spurious information.

Settings for the tuning parameter, g, and the number of eigenvectors retained, m, are
different for water vapor and temperature retrievals. Experimentally determined values

for (W, m) are currently set to (1.5, 15) for temperature, and (60, 15) for water vapor.

5.3.7 Computation of the Kernel matrix

The elements of the A, matrix in Equation (5.3.17) are derived for infrared and
microwave channels using a quadrature form of equations (4.2.1) and (4.1.2). As
discussed, the elements of A, are derivatives of radiance (brightness temperature for
microwave) with respect to individual geophysical parameters (e.g. 50 mb temperature,
500 mb water vapor mixing ratio, surface temperature) from the most recent iterative
solution. We begin by writing equations (4.2.1) and (4.1.2) in quadrature form using the
trapezoidal rule of integration. For the IR region the quadrature form of equation (4.2.1)

is,

J
RE = €nBn(Tg)tns* & %(Bn(T(pj))+ Bn(T(pj ; 1)){tn(pj -1- tn(pj)}
J =
4 an(Tsun)t %Scosq
(5.3.19)

where J represents the number of discrete pressure levels of the fast transmittance
model, p; is the pressure at the jth pressure level and all other quantities are as defined in

equation (4.2.1). Similarly for the MW region of the spectrum equation (4.1.2) is
expressed in equivalent quadrature form,

C _ 3J 1 * *
RS = enTetns+ & 1—2(T(pj)+T(pj -3){tnto) -2t +a- @)(thep- th) - D}
J:
(5.3.20)
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. 2
where t n (pj) = t n(p%](pj ) Equation (5.3.20) can be smplified by using notation

for effective transmittances, combining the upwelling and downwelling microwave

components of radiance into asingle term. The form of the simplified equation is

J
RE=Tdrs + & (T + TG - Y {Tnlpj - 1- Tne))]
=1 (5.3.21)

where t indicates the effective transmittance and is defi ned,

6 20
ok =gl- (- en)E NP o ka0 (5:322)
u

Taking the derivative of equations (5.3.19) and (5.3.21), both with respect to

temperature and water vapor mixing ratio, gives the elements of A,

Making the assumption that transmittance is independent of temperature the

temperature elements of A, for infrared channels are defined as,
i, 9B . C_
I}/zd—TJ{z tj - tJ+1} forj =1

dB; _
. dRS 'fyzd_-l-;{tj-l- tj+1} forl <j <
N -

Al (5.3.23)

= =
dTj .., dB;j
—itjg-t forj = J
.I.yz de{ -1 J} J
-'-esd—BSt s for surface skin term
17 dTs
where Jis the number of atmospheric levels and j = J corresponds to the lowest
atmospheric level, t  is the atmospheric transmittance from the surface to space, t i isthe
atmospheric transmittance from the jth atmospheric pressure level to space, e, isthe
surface spectral emissivity, and dB/ dTk isthe derivative of the Planck function
evaluated at channel i and atmospheric temperature T,. Similarly for the microwave

region the definition of the temperature elements of A, are asfollows,
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'}6{ - '-tJ+1} forj = 1

Al = j?' ::}/2{ U } fordg <J (5.3.24)
J { } forj=J
| ts for surface skin term

where the effective transmittance, t , is as defined above.

The water vapor elements of the A, matrix for IR channels are defined as follows,

i dRC g (By.1+Bypudts J;1(Byiq - Bq) dt
J_1 _€ J-17PJulls  ~, k+1 - Pkl k
Apn=—"="esBs+2ryB tscosq - + a
rJ| dcj & s UETsunts €059 2 adcj k=1 2 dcj
(5.3.25)

where B.,,,is the Planck function evaluated for channel i at the temperature of the
sun, B, isthe Planck function evaluated for channel i at the first guess level temperature
T,, q isthe solar zenith angle, r , is the surface spectral reflectivity for channel i, C, IS
theinitial guess mixing ratio at level k, and all other terms are as defined in equations
(5.3.22) and (5.3.23). Assuming an isothermal atmosphere above the uppermost pressure

level the definition of the water vapor elements of A, in the microwave are as follows,

. J 1 dt
Al (T3+T +T Jo, 5 L T 1) 2k
=R [ Po(Ta+T3. i] 1ch k:12(k+1 k-1) @
(5.3.26)
The derivative terms in equation (5.3.26) are evaluated using the definition of
effective transmittance from equation (5.3.22),
df u
—k = d - i g (53.27)
which after some manipulation reduces to the following form,
dtk dtk edtk tS dtsuts
dc; de; & )edc tk % tk
J J j jd (5.3.28)
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The derivative of transmittance with respect to water vapor is given by:

dt dint dént . d
K = gy 0K oy 2Rk Sk (5.3.29)
dc; dc; dgg dc;

where q,, the precipitable water from the space to pressure level k, is calculated by:

k
Ak = Yo 51(Cn +cna)(pn - Pna) (5.3.30)
n=
the derivative of precipitable water is given by:
i(1lzg(pj+1- pj_l) for j < k
d t
qu =i (1/2gfp} - pj-1) for j =k (5.331)
K To for j > k
f
and the derivative of the natural log of transmittance with respect to precipitable water
is:

d/nt /n(t - /n(t
(It _ g eg)” ty) (5.3.32)
dak dk1 - 9k
[Note: t,° 1inthe calculation of the above derivatives.]

5.3.8 The Observation Noise Covariance Matrix N
The observation noise covariance matrix, N, is nominally a diagonal matrix whose
non-zero elements (the diagonal elements) represent the observation noise. In the case of
aclear AMSU field of view the diagonal termsfor AIRS is 1/9 the variance of the AIRS
instrumental noise for each of the retrieval channels, since al 3 x 3 AIRS footprints

within an AMSU footprint are averaged. Thus N has the form:

2 0 - ou
€0 s3 ... ol

N=el 0 (5.3.33)
So 0 o s2

The diagonal values, [ s f ,S % - s%] , represent the noise of the n retrieval channels,
and all off diagonal elements (i.e. al interchannel covariances) are assumed to be zero.

Operationally N will include the total system noise and may include off diagonal
elements. The total system noise for each channel is due to the combined effects of
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measurement noise, cloud-clearing extrapolation (which is output from the cloud-clearing

algorithm), forward model inaccuracies, and calibration error.

5.39 The Thermal and Moisture Covariance Matrix S

Theretrieval parameter covariance matrix, denoted by Sin the previous
mathematical description of the physical retrieval, represents the expected error of the
background field. Asdiscussed above, a background field is generated from aregression
scheme using a large training data base to estimate geophysical quantities from principal
components derived from AIRS/AM SU/HSB brightness temperature observations. The
same training datais used to estimate the magnitude of expected background errors when
the regression coefficients are applied to independent data. The coefficients, matrix C
from equation (5.3.22), are applied back to the dependent training data as follows:

DV = CDT (5.3.34)

where DV isthe regression retrieval of the dependent geophysical training data

DVin equation (5.3.7). The covariance matrix, S, isthen calculated as follows:
1_ ~
S= - EE ,whereE =DV - DV (5.3.35)

where Sisan [n x n] matrix whose diagonal elements represent the expected
background variance of each of the predictants, and whose off diagonal elements

represent expected interlevel covariances amongst the various predictants.
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5.4 Final Product

54.1 Introduction

To satisfy the science requirements of NASA'’s Earth Science Enterprise, afinal
adjustment is made to the first product based on the difference between calculated and
cloud-cleared radiances. It is here that the cloud parameters, and the research products

(not described in this document) are cal cul ated.

When solving for a set of geophysical parameters, it is desirable to be able to choose
an appropriate set of parameters to solve for and select channels that are both sensitive to
those parameters and relatively insensitive to other parameters. In general, channels will
be affected by more than one type of parameter. For example, channels with radiances
sensitive to the water vapor or ozone distribution are also sensitive to the temperature
profile and often to the surface skin temperature. Our approach isto solve sequentially
for the surface parameters, temperature profile, water vapor profile, and ozone profilein
that order. In thisapproach, variables already solved for, used in conjunction with first
guess variables, are kept fixed when solving for the next set of variables. Table 5.4.1 lists
the variables solved for and the number of channels used in each step. The above order is
chosen because channels can be selected for a given step that are relatively insensitive to

variables to be solved for subsequently.

The iterative solution to the problem contains equations that are of the form of
equation (5.3.13). However, the fina product methodology solves for updates to
coefficients of functions of temperature, moisture, etc., rather than updates to the
geophysical parameters themselves. Therefore, the termsin the equation have avery
different meaning. For this reason, a different notation is used so as not to confuse the
reader. For example, in place of A in the analog of equation (5.3.13), which refersto the
derivative of the radiance with respect to changes in a geophysical parameter, the
sensitivity of the radiances to changes in the coefficients of the expansion functions, S, is
used.
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A total of 278 AIRS channels, 15 AMSU A channels, and 4 HSB channels are
selected for usein the AIRSYAMSU/HSB retrieval algorithm. Some of the surface
parameter sounding channels are also used in the water vapor or temperature profile
retrievals. Therefore, the total number of channelsis less than the sum of the channelsin
column 2. Likewise, the water vapor solved for in the ground temperature retrieval is
subsequently updated in the water vapor profile retrieval step. The 297 channels are used

to solve for 42 variables.

The general AIRSAMSU/HSB retrieval agorithm does not require any field-of -
view to be cloud-free (Susskind et al., 1996). The algorithm used in the final product
retrieval consists of the following main steps: (0) Obtain an initial guess for the
temperature, moisture, and ozone profiles. (1) Derive afirst estimate of the cloud cleared
radiances and channel noise covariance matrix. (2) Retrieve surface parameters. |If
necessary, the first guess and cloud-cleared radiances may be improved at this point and
the surface retrieval may be repeated. Thisloop ends the basic startup procedure. (3)
Retrieve temperature profile. (4) Retrieve water vapor profile. (5) Retrieve ozone
profile. (6) Produce final cloud cleared radiance estimates. Repeat (2) - (3) starting with
updated cloud cleared radiances and water vapor and ozone profile. The genera
approach to solve for the parametersin steps (2) - (5) isin the form of iterative
constrained least squares solutions, one for each set of variables to be solved for. The
form of the equations to be solved isidentical for each of the four steps. More details
about the stepsin the final product retrieval algorithms are given below.
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Variables Channels Frequencies
Ground Temperature Retrieval
Ts,Dn W, 8IR spectral emissivity 23 758 ® 1235cm-1
functions, 3 IR spectral bi-directional 35 2170 ® 2669 cm-1
reflectance functions, MW spectral 6 23.8-150 GHz
emissivities
Temperature Profile Retrieval
14 layer temperature- 103 651 ® 768 cm-1
functions (trapezoids) Ii:; 2298 ® 2501 cmrl

50.3 ® 57.29 GHz
Water Vapor Profile Retrieval

8 layer column density functions 69 790 ® 2650 cm-1
>4 150-183.31 GHz
Ozone Profile Retrieval
5 layer column density functions 23 1001 ® 1069 cm~1

Total: 42 variables 297 channels (AIRS + AMSU)

TABLE 5.4.1. VARIABLESAND CHANNELS

Steps in the AIRS Final Product Algorithm

Obtain aninitial guess which agrees with AMSU and HSB radiances. Thisis
obtained from the first product physical retrieval, followed by atemperature profile
retrieval using AMSU A radiances and AIRS radiances for channels sounding
above the clouds, sequentially followed by awater vapor retrieval using HSB
radiances.

Determine an initial hi from equations (5.2.30) and (5.2.29), using the initial guess
parameters. Allow amaximum of two h’s. Also produce the retrieval noise
covariance M ! as described later.

Perform a start up surface parameter retrieval using Iiil obtained from equation
(5.2.20). All channelsused in this step are sensitive to clouds, so there isno need to
retrieve cloud height.

Produce an improved AM SU temperature profile retrieval, using the retrieved

val ueTsl, and radiancesin AMSU channels and a set of AIRS stratospheric
sounding channels which do not see the clouds.
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5.  Determine updated hlz( taking advantage of the refined parameters. Allow a

maximum of three h’s. Also determine cloud parameters to decide which channels
2

[
channel noise covariance matrix M 2. Thisisthe end of start up system.

6-9 Use IA?i and M ? to refine the surface parameters, temperature profile, humidity
profile, and ozone profile. These steps give the first pass retrieved parameters.

10. Using thefirst passretrieved parameters, determine refined h3 ,dlowingupto 4

values of h and final cloud parameters.

do not see clouds. Thisinformation is used to produce RZ aswell astheretrieval

11. Produce the final clear column radiances Iiis
M3,
12. Perform atest AMSU temperature profile retrieval for rejection test.

13. Repeat steps 6-7 using F}f’ and M 3 to obtain the final surface and temperature
profile products, using the first pass retrieved water vapor and ozone parameters
and first guess temperature profile as the initial guess.

14  Apply rejection tests. If solution is not accepted, return the microwave product as

the final solution and set an appropriate flag.

, which is a product of the system, and

54.2 General Iterative Least Squares Solution
An iterative approach is used to linearize the radiative transfer equation about the n
iterative parameters X? *1 Theiterative retrieval process described here is different
from the use of different passesin the determination of h. The values of |?ei used in the

iterative retrieval loop are held fixed in agiven pass. The n+1" iterative estimate of Xy

is expanded according to

J J
n+1_yn_. 3 . pal = 2 .
Xy =Xy + i ng DA Xg + i FgJA (5.4.1)

where the columns of F represent a set of functions, X ¢ istheinitial guess, and A j“

are corresponding coefficients given by

+ DA (5.4.2)
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which together with X? determine the solution. A solution isfound that attempts to

minimize the residuals DQ|n , weighted inversely with respect to expected noise levels,

for the channels used to determine A - Theresidua for channel i isdefined by

n_(a. . gn)e@Bs
DQj —(Rl - Rj )éd-l-g : (5.4.3)

where Iii is the reconstructed clear column radiance, R{' is the radiance computed
from the nth iterative parameters, and Q" is the brightness temperature computed from

then" iteration parameters. The n" iteration residual for channel i is attributed to errors
in the coefficients, dAT , and to noise effects, i.e.,

n_s N n ~.
DQj =a §jj dAj +Q (5.4.4)

J

where S;; is an element of the sensitivity matrix or Jacobian given by

Sir'l — ﬂ;Rln gI_Bd-l
J ﬂA? édTﬂQin (5.4.5)

and the noise factor éi for agiven case has two parts: errors in observed cloud-

cleared radiances d@i , which are affected by instrumental noise and cloud clearing

errors, and computational noise inC.

In simulations, a perfect knowledge of physicsis assumed, i.e., al the variables are
known exactly, the exact noise free radiances are computed. Nevertheless, the
transmittances depend on the variables to be solved for. Therefore, computational noise
exists. Computational noise, arising from errors such as too low (high) an estimate of
atmospheric water vapor, produce noise that is correlated between channels.
Instrumental noise is uncorrelated from channel-to-channel but cloud-clearing errors are
correlated from channel-to-channel. Each retrieval step uses an appropriate noise

covariance matrix
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Mij _(MIJ+MIj) - (5.4.6)

where M is defined in Equation (5.2.30) and M is discussed later, with values

which depend on the pass. Writing W as M~ for simplicity.

A general form of the solution to this problem is given by

-1 _
=[s"w S'+H"| s wpQ" =M "DQ" (5.4.7)

where DA™ and DO " are column vectors of the updates to the coefficients and of the

residuals, respectively, and H N isastabilizi ng or damping matrix.

Hanel et al. (1992) and Rodgers (1976) have reviewed several methods of
constraining the ill-conditioned inverse problem. In the minimum variance approach
(Rodgers, 1976), H istaken to be the inverse of the a priori error covariance. If the
statistics of both the measurement and a priori are Gaussian, the maximum likelihood
solution isobtained. If thea priori covarianceistakento be H = g, the maximum
entropy solution is obtained. Other forms of H include the first or second derivative
formulations (Twomey, 1963) that force a smoothness constraint on the solution. The
solution can also be constrained by the relaxation method (Chahine, 1968) and by the
Backus and Gilbert (1970) method.

The minimum variance and maximum likelihood solutions are often considered to be
"optimal." However, if thea priori error covariance is not known or estimated
incorrectly, the solution is sub-optimal. If thea priori errors are underestimated, the
solution is overconstrained. Potentially, this creates biasesin theretrievals. The biases
mask small trends in the retrieved data that scientifically important. The approach
described here attempts to keep the effects of instrument noise at a tolerable level without

assumptions regarding the a priori data error covariance.
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5.4.3 Transformation of Variables

As a consequence of stabilizing the potentialy ill-conditioned solution, the addition
of H also has the effect of damping the information content (reducing DA for all modes).
The variables are transformed to apply a constraint such that the well-determined
components of the variables are solved for without appreciable damping. If adifferent

set of functions are chosen which are linear combinations of original functions, i.e.,

G=FU (5.4.8)

where U isaunitary transformation (UU ¢= 1), and expand the solution in the same

way asin Eq. 5.4.1 with unknowns DB", this obtains the matrix form

X™lox" oo™ =x" + FUDB" = X" +FDA" (5.4.9)

The objectiveisto find a transformation matrix U with desirable properties. In

the new basis set, the transformed Jacobian is given by

-1
n IR 286 " _any
18" ©dT%q (5.4.10)

The constrained solution, as given by Eq. 5.4.7, in terms of this new set of functions

is given by
n_gn 6t _n n n-1 n
DB" =¢T WTn+Hg T W(DQ - dQ ):UGDA (5.4.11)
The term dQrl " Lisaniterative background correction term that is zero in the first

iteration (it is discussed further below). U" is selected such that

n
T¢ W"T" = U¢St W S isdiagonal with real non-negative eigenvalues | j. The
inverse of each eigenvalue isthe variance in that eigenmode. The total variance isthe

trace of the (SwS )™ or, equivalently, the trace of (UGaVSU) L. The unconstrained

solution (H=0), with no background correction (dQ”' o O) , iIsthen given by
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1, 1
08(0)= (1)~ &7 wi; DR =(1") " m Q"
ki (5.4.12)

where m? isthe vector corresponding to the j" row of T&V . In general, theill-
conditioned cases arise from those components of G having low information content and
small eigenvalues (high variance), indicating that those components are not well
determined from the observations aone and need damping. Components with large
eigenvalues are quite well determined and require little or no damping to achieve a stable
solution. If H is chosen to be diagonal with values DI , the constrained solution with no

background correction term is given by

-1
N =8N, pNo " mhpol
DB} (DI ) f;‘i’J+D|JQj m;' DQ (5.4.13)

The coefficients DB}’ (DI T) are damped from the unconstrained coefficients

DB;' (0) by

| N
neyno—__ 1 pgl(o)=F" pe"
DBJgf)IJg |U+D|UDBJ(O) Fi' DBj' (0)
I

(5.4.14)

where F ; can be thought of as afilter or damping function. Thisformulation isthe
same as the maximum entropy solution, applied in transformed space, if DI is set equal
to aconstant. However, instead of using a single constant for every DI T adifferent

value is computed for each eigenfunction. For well-determined eigenmodes, DI is set
equal to O, giving no weight to the a priori. For modes that are not well determined by
the measurements, DI is determined in such away asto limit the propagation of

instrument noise to a pre-specified amount. The determination of D rJ‘ isdiscussed in

detail in the next section.
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5.4.4 Application of a Constraint

Theresidua DQ,” can be thought of as having both a signal and a noise component,

i.e.,

signa

DQ' = DQ; +Q; (5.4.15)

The component of DB that arises from the propagation of channel noise, éi IS

given by

=" +0 no [Tcﬂq W] Q. (5.4.16)

A statistical estimate of d~BJn over an ensemble of profiles can be obtained by

-1 12 ?Jﬂ

i B - .
B'=a"s", =F'+0"o T¢WQQ¢W¢T]
J Ij+D|rj‘

|9
(5.4.17)

because ééd:z M =W~ L. Thisformulation of dD issimilar to that given by

Rodgers (1990). If DI | were zero, dB"

] becomeslargeifl issmall. DI j isselected

such that dNBJn isless than or equal to athreshold value. If dNBJn is alowed to be no more

1/2

Ij - dBMAXIj

than dB then Dl . |ssettozerO|f | 3 dB;VleX and DIj =
dByiax

otherwise. For example, if dBy,,x =0.5 DI j =0for | ;2 4, andif dBy;px =1, D
=0for | ;3 1, corresponding to less damping. Constraints are only applied to those
eigenfunctions with lower information content than the critical value corresponding to
dBy ax - Thevaueof dBy,,y hasbeen determined empirically for each type of
retrieval. The AMSU temperature retrieval step behaves best with DByjax = 1.0, the
AIRS surface temperature retrieval step with avalue of DBpjax = 0.35, the AIRS
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temperature and moisture profile retrieval stepswith DBy, =1.2 and 1.
respectively, and the ozone profile retrieval with DBy, 1y = 4. The computation of all

matrix elements shown above, including | and DI , isdone in each iteration.

5.4.5 Formulation of the background term
The need for an iterative process arises because the radiative transfer equation is not

linear. Inevery iteration, Q", S, U" and | " are each recomputed. If the solutions were
completely linear, and no damping is applied then
DQn+1(O) @DQn _ Sn U n [Bn(O) (5_4_18)

and DB"*! (0) is zero because DB"(0) already minimizesthe residuals.

Eq. 5.4.18 is not exact, because both Q™" 1(0) is not given exactly by
Q"+ su"pB", and DBJ-n 1 DB? (0). Asaresult of applying DB;' rather than DB;'(0),

which minimizes the radiance residuals

pQ"*1, b *1(0) +sNUN ’DBn(O) : DBn] ="M+ Q" (5419

In Eq. 5.4.19, DQ"*}(0) represents the portion of DQ"** that is due to effects of

non-linearity on the solution, while dQ" represents the residual portion of DQn+1 dueto
the effects of damping in iteration n. The second term is zero for undamped modes and
increases in significance with increased damping. Thisterm isalso zero for all modesin

the first iteration. It is desirable to include the effects of non-linearity in the iterative

procedure used in the determination of DB". Therefore, the background term to be used
in EqQ. (5.4.11) isgiven by

dQ" =s"uy" [DB” 0) - DB”]

and we solve for DBjn+1 according to
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-1
DBl +1=gn+1.pi+ip ud‘*lsd"’lwr‘*lDQ”*l-dd“]
-1
_ch+l on+1 n+1 n+1p
=F """ o8] (0)-2‘?1- +DI 70 (5.4.20)

N tlegn+1l\wyn+1annggpng - prNOU
e T Ese T EWn TR STUNEDBIN0) - DB'G

where DBjn isthe value of DB;j which applied initeration n. Inclusion of the

background term in Eq. (5.4.20) ensures second order convergence along the lines
discussed by Rodgers (1976) with regard to treatment of the a priori term.

5.4.6 ConvergenceCriteria

Solving Eg. 5.4.20 finds solutions to the radiative transfer equations which minimize
weighted residuals of observed and computed brightness temperatures, corrected for the

background term. To test convergence of the solution, the weighted residual is monitored

. A7/
R= ‘?e.(DQ- dQ¢V¢ V(DQ - dQ)lEJ‘ (5.4.21)

where the weight matrix V accounts for noise effects on the channel residuals, as
well asthe relative information content of the channels with regard to the variables being
solved for. For example, if achannel (or linear combination of channels) carries little
information content in terms of signal-to-noise, it is given little weight in the estimation
of theresidual in Eqg. (5.4.21). An appropriate choice of V, expressing the information

content of the channelsis

v=(1;+0 ) (Tew) (5.4.22)
in which case we obtain

R =[pBeDB]H (5.4.23)

Asshown in Eq (5.4.23), areasonable way to determineif the solution has

converged, in terms of weighted residuals, isto seeif the solution converges in terms of

the iterative changesin the solution itself. Initialy, DB; =0 if F% <0.05, that is,
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coefficients of very heavily damped components with little information content are given

no weight. The solution is said to have converged when the RM S value of DBj" isless

than 10% of the RMS value of dB" for all components not set equal to zero. The
iterative procedure is also terminated if the RMS value of DBJ-n is not less than 75% of

DBJ-”' ! for the non-zero components. Thisindicates the solution is not converging

rapidly enough and is responding primarily to unmodeled noise. The iterative procedure,

which usually convergesin 3 iterations, is carried out analogously for all retrieval steps.

5.47 Theretrieval noise covariance matrix

Theretrieval noise covariance matrix M used in EqQ. (5.4.11) (writing W° M~ Ltor

simplicity) is given by a sum of two terms

. - B: "'1<’:’E€|B'"_1
M :: :(M S M_.)E:'QLO Q_JQ (5.4.24)
ij 1] Ve qr 2n. edT faQ
! j

where M represents the error covariance in the reconstructed cloud-cleared

radiances and M represents the error covariance in the radiances computed from the

estimated profile, as aresult of errorsin parameters assumed known (being held fixed) in

aretrieval step. M is given in Equation (5.2.35).

The computational noise covariance matrix M isdesi gned to account for errorsin
the computed cloud-cleared radiance, RP, resulting from errorsin the geophysical
parameters used in the retrieval step. It isassumed that these errors arise primarily from
errorsin variables X, assumed to be known and held fixed in the retrieval step. M is
modeled according to

N/l" _2 éﬂRI 2 @02
|

nuz
o[, +(01 (5.4.25)

a -
j 81X ' d

and
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= & IR TRis
j

2
n
™, 1% dX| (5.4.26)

where % represents the derivative of R{" with respect to parameter X and de” is
i
the estimated uncertainty in parameter X initeration n. The parameters used for X in

modeling M represent uncertainties in surface skin temperature, surface emissivity and
surface reflectance, as well shiftsin the temperature profile, and multiplication of the

water vapor and ozone profiles by functions of height. The derivatives IR are

J
computed empirically. Theterm 0.1 in Eq. (5.4.25) is taken to represent additional

unmodeled errors. Appropriate functions dX" (P) are computed for each passmin a
manner to be described below.

548 Variable and Channel Selection
5.4.8.1 Surface Parameter Retrieval

Channel radiances depend on several unknown surface parameters. the surface skin
temperature (Ts); the spectral emissivity, e(n), and bi-directional reflectance r (n); and
the microwave spectral emissivity (ey,). Theretrieval uses 88 infrared window channels
and 6 microwave window channels. Inclusion of the microwave window channels
stabilizes the surface parameter retrieval and also provides one piece of information about

the microwave spectral emissivity.

In the surface parameter retrieval, w infrared window channels are selected from
both long- and short-wave infrared window regions generally avoiding even weak
absorption lines. For window channels, the transmittance at the surface, t (ps), is
generally close to unity. Although the opacity of infrared window channelsis small,
there is absorption and emission due to the water vapor continuum and the nitrogen
continuum, both absorbing primarily in the lowest portions of the atmosphere. Therefore,
the radiance in window regions depends not only on Ts, e(n), and r ¢n), but also on the
temperature and moisture in the boundary layer. The radiances of window channels do
not depend appreciably on temperature and moisture above the boundary layer. To
account for the additional dependenciesin the surface parameter retrieval, two additional

variables are solved for by scaling the total precipitable water (D/n W) and shifting the

117



AIRS Level 2 Algorithm Theoretical Basis Document Version 2.1

air temperature (DT, g )- A few channels centered on weak water vapor absorption lines
areincluded to help account for these additional variables that are subsequently modified
in the temperature and moisture retrievals. These weak water vapor lines arein the 3.7
mm window and are sensitive to water vapor absorption as well as reflected solar
radiation. The reflected solar radiation causes the surface to appear hotter than in other
window regions not affected by reflected solar radiation. Therefore, in the short
wavelength window, the contrast between the radiance leaving the surface and that
emitted by the boundary layer is enhanced. This effect, coupled with the increased path
length of the solar radiation, makes channels on weak water vapor linesin this window
very sensitive to water vapor in the boundary layer. Several of the channelsin the
surface parameter retrieval are also used later in the moisture profile retrieval. Currently,
no attempt is made to shift the temperature profile in any pass because the input
temperature profile agrees with the AM SU radiances and is assumed to be accurate
enough. The water vapor profile is scaled in the second pass surface parameter retrieval

because awater vapor profileisretrieved using AIRS infrared channelsin the first pass.

When scaling the water vapor, profile, atotal of fourteen variables are solved for in
the surface parameter retrieval for daytime cases (eleven for nighttime cases). The
perturbation functions include a perturbation to Tg, a perturbation to each of 8 infrared
spectral emissivity functions, 3 spectral bi-directional reflectance functions, and a scaling
of the water vapor profile, and a piece of information about the microwave spectral
emissivity. The values of the perturbations are selected to give comparable values of the

S matrix for atypical case. If all perturbation functions F; were half aslarge, S;; would
be half as large for each mode, and the solution vector DA; would be twice aslarge. The

perturbations are large enough to produce significant S matrix elements, but not so large

as to produce an appreciable non-linear response.

The Jacobian or sensitivity matrix S" is computed every iteration. The partial
derivative of channel radiance with respect to the coefficients of each of the above

functions are computed empirically asfollows: (1) Compute thei™ channel radiance

using the n' iteration parameters (i.e., TQ e"(n), d" (P), etc.) (2) Compute thei™
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channel transmittance (if necessary) and radiance using the n" iteration parameters but
setting the coefficient (DA)) of perturbation function F; to unity. (3) The sensitivity §jj,

related to the change in channel radiance per unit change in coefficient DA, is given by

the difference in radiances computed in steps (1) and (2), divided by (dB/ dT)Q_n. The
1

sensitivity or partial derivative of radiance with respect to surface temperature, spectral
emissivity, and surface bi-directional reflectance can be computed theoretically by
differentiating the clear column radiative transfer equation because the transmittance

functions do not depend on these parameters.

After the sensitivity matrix is computed, the inversion procedure described earlier
proceeds. In the surface temperature retrieval, modeled channel computational noiseis
not included in the noise covariance matrix, but includes only an estimate of 0.1K for
unmodeled computational noise from other sources in Equation (5.4.22). The retrieved
valuesof Ts,e(n), and r(n) are held constant and used in the subsequent iterative steps
for temperature, moisture, and ozone profile retrievals. The shifted water vapor profile
are held fixed in the transmittance and radiative transfer calculations for the temperature

profile retrieval and used as the first guess in the water vapor retrieval.

54.8.2 Temperature Profile Retrieval

The temperature profile retrieval problem is set up and solved in a manner
completely analogous to the surface parameter retrieval. The solution for the retrieved

temperature profile iswritten in the form

()= To(R) + & (R)AT = T(P) + FA
)=l (5.4.27)
where ¢ ranges over the number of levels used to compute channel transmittances
and radiances, and j ranges over the number of functions that are solved for, currently set
to 14. The functionsin the surface parameter retrieval are taken as discrete changesin
different surface or atmospheric parameters. Following the approach of the surface

parameter retrieval, the functions F; are selected aslocalized functions of pressure,
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corresponding to changes in temperature primarily in alayer from P; to Pj_;. Useof

localized functions is convenient for computing the S matrix and makes the problem
more nearly linear. The methodology discussed previously does not require the functions
to be orthogonal. 1n order for the solution to be continuous, the functions chosen are

trapezoids, with avalue of 0.5K between P; and P;.; and falling linearly in log P to OK
a Pj4, and Py_,. The highest and lowest functionsin the atmosphere are special cases,

with values of 1K at the upper or lower limit of the atmosphere (1 mb or the surface),
0.5K at the adjacent pressure, and followed by OK at the next pressure level.

The Jacobian matrix is computed exactly asin the surface parameter retrieval. In

any iteration, transmittances and radiances are computed for the temperature sounding
channelsusing T"(P) and T"(P) + F;(P) , where F;(P) is one of the trapezoids, and the

Jacobian is obtained empirically according to

asBgs !

S =[Ri(T”(P) +F(P)- Ri(T"(P)|2 oo (5.4.28)

It can be shown that for an opague temperature sounding channel, a shift of the entire
atmospheric temperature profile by 1K will cause roughly a 1K change in brightness
temperature (Susskind et al., 1984). Moreover, alocalized change of 1K inan
atmospheric layer containing the non-zero part of the channel's weighting function
likewiseresult in al K change in brightness temperature. This brightness temperature
change decreases as the layer becomes thinner than the weighting function. To insure
sensitivity of at least one sounding channel to changesin the layer (or trapezoid)
temperatures, layers are selected to be sufficiently coarse asto have an element of the S
matrix of at least 0.2 for the layer. While the Jacobian is profile dependent, the layer
structure used to define the trapezoid functionsis held fixed for all soundings. They are
selected so as to be neither too thin, resulting in lack of sensitivity, nor too coarse,
resulting in lack of resolution. The pressure boundaries for the 14 functions used are
shown in Table 5.4.2. According to Equation (5.4.27), the only structure in the solution
with finer spacing than these boundary levels must come from the initial guess. In fact,

the transforming and damping functions, as discussed earlier, further decrease the ability
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of the solution to discern fine structure not contained in the information content matrix

SWS . Thisdamping is profile dependent.

In the first pass temperature profile retrieval, channels are selected which are
relatively insensitive to the ozone and water vapor distributions as these variables have
not been solved for, except for an estimate of the column water vapor content obtained in
the surface temperature retrieval step. In addition, temperature-sounding channels are
selected between absorption lines to optimize the channel weighting functions (Kaplan et
al. 1977). Along thelinesof Kaplan et al. (1977) and outlined in Table 4.3.1, the
retrieval uses 96 channelsin the 15 nm CO, band, including the Q-branch near 666 cm™
to sound the mid to upper stratosphere; channels in between CO, absorption lines and
near the 720 cm™ and 740 cm™ Q-branches to sound through the upper troposphere; and
33 channelsin the CO, 4.3 mm band P and R branches, primarily in the vicinity near 2380
cm™, to sound the mid- to lower troposphere. The noisiest spectral region is near 15 nm.
For this reason, many of the 15 nm channels represent spectral intervals sampled twice
per channel width. This adds little information about the vertical structure but increases
signal-to-noise. Thereare 12 AMSU channelsincluded (3-14 from Table 2.3) in the

temperature profile retrieval.

Unlike Kaplan et al. (1977), 7 temperature sounding channels are included, which lie
between absorption linesin the 15 nm CO, band, that are sensitive to the mid-lower
tropospheric temperature profile. The inclusion of these channels does not appreciably
affect sounding accuracy under clear sky conditions but are significant under cloudy
daytime conditions. This somewhat compensates for the increase in effective noise levels
of the 4.3 nm tropospheric sounding channels during sunlight conditions. The selection
of these channels avoids spectral regions near water vapor lines of appreciable strength.
The channel radiances of the mid-lower tropospheric temperature sounding 15 mm
channels are still affected by water vapor due to the wings of nearby water vapor lines as
well as the water vapor continuum. As described previously, our sounding methodology
involves two temperature profile retrieval steps, one (first pass) before the water vapor
retrieval, and the other (final pass) subsequent to it. In thefinal pass, a number of

additional channelsin the water vapor absorption band are included which produce sharp
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temperature weighting functions. Even though the water vapor retrieval has been
performed, these channels are still treated as “noisy” in the channel noise covariance
matrix to the extent that the predicted uncertainty in water vapor distribution produces

uncertainty in the computed radiances.

Errorsin the estimate of the water vapor profile used to compute the radiances,
produces errors in the computed brightness temperature for a given channel, aswell as

correlated errorsin other temperature sounding channels sensitive to water vapor

absorption. These errors are accounted for in the noise covariance matrix M.

The effect of errorsin the estimated water vapor profile on computed radiances, as
well as radiance errors due to errors in ozone profile and surface parameters, are taken

into account in the computational noise covariance matrix (Equations 5.4.25, 5.4.26). The

Temperature Moistureretrieval | Ozone retrieval

retrieval
0.016 0.016 0.016
0.975 170.1 20.92
2.701 260.0 51.53
5.878 300.0 71.54
11.00 343.6 103.0
18.58 407.5 1424
51.53 496.6 300.0
89.52 596.3 surface
142.4 706.6
190.3 857.8
314.1 surface
478.0
661.2
827.4

surface

Table 5.4.2. Trapezoid or Layer Endpoints

noise dueto errorsin the ozone profile is computed analogously to that for water vapor.
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Incorporation of these termsinto the noise covariance matrix has the effect of
making channels sensitive to water vapor absorption, ozone absorption and/or the surface
temperature appear noisier. It should be noted that in general, the mid-lower tropospheric
sounding 15 nm channels will be "noisier" for humid cases than for very dry ones, where
uncertainty in water vapor profile will have a smaller effect on the 15 mm radiances.

Conversely, 4.3 mm channels are “noisier” during the day than at night.

The contributions to the noise covariance matrix due to errors in estimated total
precipitable water and surface skin temperature are included for all temperature sounding
channels. Neither isincluded in the ground temperature retrieval because both variables
are being solved for. The estimated error in surface temperature is included in the noise
covariance matrix in the subsequent steps of water vapor profile retrieval and ozone
profile retrieval, and the estimated error in water vapor profileis aso included in the

ozone profile retrieval, but not in the water vapor retrieval.

The retrieval step described above is done after the AMSU temperature profile
retrieval step has been completed. That AMSU retrieval step is analogous, but uses only
AMSU channels and stratospheric AIRS temperature sounding channels, and solves for
one piece of information about the microwave spectral emissivity aswell as coefficients

of the 14 temperature perturbation functions.

5.4.8.3 Water Vapor Profile Retrieval

Unlike the surface parameter and temperature profile retrievals, the water vapor
profileretrieval problem is highly non-linear. A change in water vapor abundancein a
given level affects the transmittance in that layer as well as the atmospheric emission and
absorption at all lower levelsin acomplex manner. Nevertheless, the problem is solved
in acompletely analogous manner. In the surface parameter retrieval, the entire water
vapor profile (up to 50 mb) is multiplied by a constant unknown factor. Following this

form, the solution for the retrieved moisture profile is expressed as

(5.4.29)

Qoc,

F(P)A]
1

ooy .

n _ 0 €
q"(P)=q"(P) &+
5

—
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where ¢ ranges over the 64 levels used to compute transmittances and radiances, and

j ranges over J solution functions. The functions F; (P,) are expressed as trapezoids with

avalue of 0.05 in coarse atmospheric layers, in amanner analogous to that described
above for the temperature profileretrieval. The endpoints of the 10 trapezoids used in the
moisture profile retrieval areincluded in Table 5.4.2. The highest trapezoid has avalue
of 0.05 at 170.1 mb and 260 mb and 0 at .016 mb and 300 mb. The lowest function is
comprised of two straight lines, with avalue at the surface and 857.8 mb of 0.05, and a
value of 0 at 706.6 mb.

In the moisture retrieval, we include channels between absorption linesin the 6.3 nm
water vapor band that are sensitive to humidity throughout the troposphere. These
channels provide sharper weighting functions (more localized absorption) than centers of
strong lines and make the problem more linear. In addition, some channels are used on
the peaks of the strongest absorption features in the 6.7 mm band, which are sensitive to
stratospheric water vapor. Channels are also included on and off weak water vapor
absorption linesin both the 11 nm and 8 nm windows, sensitive to the water vapor
continuum which improves the sounding capability for lower tropospheric humidity.
Channelsin the 3.7 nm window provide improved sensitivity to low level moisture
during the day. The S matrix is computed empirically exactly asin the temperature
profileretrieval. The parameters determined from the surface and temperature profile
retrievals are kept fixed in the calculations.

In constructing the noise covariance matrix, terms for uncertainties in ground
temperature are included, as in the temperature profile retrieval, as well as aterm shifting
the entire temperature profile, as done in the noise covariance matrix used in the
determination of h (Equation 5.2.15).

5.4.8.4 Ozone Profile Retrieval

The solution for the ozone profile retrieval has the same form as that for the moisture
retrieval. The ozone retrieval uses 7 trapezoid functions with values of 0.05, asin the
water vapor retrieval. The end points of the trapezoids areincluded in Table 5.4.2. The

same steps outlined in the previous section are used to compute the Jacobian. It iscritical
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to solve for water vapor before ozone because ozone channels are sensitive to absorption
by boundary layer water vapor. There are 23 channelsin the 9.6 mm ozone band selected
for the ozone retrieval. Uncertainties in surface parameters, temperature profile, and

water vapor profile are included in the ozone noise covariance matrix.

5.4.8.5 Retrieval of Cloud Properties

The observed radiance for thei™ channel, R; , in ascene withj cloud typesis given
by

R =(1- é. aj)RicLr + é ajRicLD,
j j (5.4.30)

where aj isthefraction of the scene (in anadir view) covered by cloud typej,
Ri cL risthe clear-column radiance for channel i (i.e., the radiance emerging from the
clear portion of the scene), and Rj cLp,j isthe i"™ channel radiance emerging from the

cloudy portion of the scene covered by cloud typej (Chahine, 1982).

The computation of RjcLp,j for agiven sceneis complex due to the detailed

spectral absorption and reflection properties of clouds, cloud morphology within the
field-of-view, and geometric shadowing factors. Assuming plane parallel cloud

formations and nadir viewing, RjcLp,j isexpressed as

0
Ri cLD,F tic; Ri (IOC )t (pc )+€1c Bi (T )t (pc )+ 0 Bj [T(IO)]%

ch
+r ch Hit p(pCj )cosq0
(5.4.31)

where Rj (pCj ) isthe upwelling radiance at cloud top pressure pCj , and t icj and
eicj are respectively the transmissivity and emissivity of cloud type | at channel

frequency nj, B, (ch) isthe Planck function evaluated at channel frequency n; and

cloud top temperature ch T p‘cj is the cloud bi-directional reflectance of solar radiation
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incoming at solar zenith angle g and outgoing in the direction of the satellite, t p(pcj )is

the two path atmospheric transmittance from the top of the atmosphere to the cloud top

pressure pCj , and Hj isthe solar irradiance. In Eq. (5.4.32), the first term represents

upwelling radiation from below the cloud that passes through the cloud. The second term
represents radiation emitted by the cloud that is transmitted by the atmosphere to the
satellite. The third term represents that portion of the radiation absorbed and emitted by
the atmosphere above the cloud, and the fourth term represents solar radiation reflected
by the cloud in the direction of the satellite. This neglects asmall term dueto
downwelling thermal radiation reflected off the cloud in the direction of the satellite.

If there is only one cloud type in the scene, Rj c|p,1 isexpressed as

Ri.CLD.1 = tiogRi,CLR * eicy Bi(Tey ti(Pey) + (- ticy ), Bi eI denp

ed/np@a
+r iTclHit [I(pcl)COSqo
(5.4.32)

When retrieving cloud properties, the channels used are limited to those at

frequencies less than 1250 cm'l, for which the last term in equation (5.4.32) is not
significant. Making the approximation that t icy = @- eicl), then equations (5.4.30 and

5.4.32) combine to give

R B
Rl = (l- ale|cl)R|,CLR + (a1e|cl) R|,CLD (pcl) (5433)

where RiL?CLD (pol) isthe radiance form ablack cloud (t jc =0, ejc =1) at cloud
top pressure Py It is apparent that the term aq €icy appearsonly asa product in

equation (5.4.33). Therefore a and ej¢ are not determined independently, but only asa
product, which can be thought of as the radiatively effective cloud fraction that may be a

function of frequency. To the extent that ej. isafunction of frequency, the frequency

dependent term aj ejc, isexpressed as (aecﬁ)l F(n) where (aecp)q isarepresentative
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value of the effective cloud fraction ag eiclat agiven frequency i, and F(n) expresses

e
the frequency dependence of -
€cn
In the case of two cloud types, assuming t icy =@~ €icy): then the radiances are

written as

=z =z == . pB == pB
Rj=(-2a®1- a&2)Ri,CcLR + 28§ 1R (Pc ) +a8& 2R (Pc,) (5.4.34)
where a€;j 1 and ag; o aretheradiatively effective cloud fractions for the clouds at

Py and Pc, - For the higher cloud at Pey s agj1=a1 €icy & before. On the other

hand, for the lower cloud

agj 2 = ejcy[a2+ (L - g¢j)aiairl (5.4.35)

where a2 isthe fraction of the area covered by cloud type 1 which is under-

covered by cloud type 2. In equation (5.4.35), €icy multiplies the cloud fraction for

layer 2 as seen from above, and is comprised of two parts: aqo isthefraction of the

scene covered only by cloudsin layer 2, and (1 - qcl)a 1212 isthat part of the scene

covered by clouds of both type 1 and type 2, which is seen through cloud type 1, with

transmissivity (1 - qcl). If either €icy is independent of frequency or a1o isthe same

for all fields of view, this situation corresponds to two cloud formations. In thefirst case,
the radiances are equivalent to awell-defined, frequency independent amount of each
type of black cloud. Inthe second case, cloud type 1 has a constant spectral dependence
in each field-of-view which combines properties of cloud types 1 and 2. To the extent

that (L - qcl) is frequency dependent, and a1 depends on field-of-view, this situation

actually contains three cloud formations, because the spectral dependence of radiancesin
areas covered by clouds at both levelsis different from that of clouds at either of the two
levels, in amanner that is field-of-view dependent. The significance of this with regard

to determination of cloud-cleared radiances remainsto be tested. With regard to
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determination of cloud parameters, the spectral dependence of aeg;j » contains the product
of two spectrally dependent terms €icy and €icy - Tofirst order, agj o = aec, F2(n)

but care must be taken in interpreting F(n).

Currently, cloud parameter retrievals have been attempted using the AIRS team
simulations, which contain two layers of clouds with constant known spectral emissivity
(=0.9) with a2 equal to zero for al fields-of-view. Observationsin each of the nine
fields of view k=1,9 were used to determine cloud parameters. The channel radiances

Rj  kisexpressed as

Ri,k=(1- (@1 - @82 )Ri,CLR *+@EENKR; (Pcy) +(@8)2k R} (Pey)
(5.4.36)

The cloud parameter retrieval is performed after all other parameters are solved for,
in an exactly analogous manner to that of al other retrieval steps. Given a surface skin

temperature, surface spectral emissivity, and atmospheric temperature, moisture, and
ozone profiles, Rj c| R and RiB (IOcJ-) arereadily computed. The only unknownsin
equation (5.4.36) are (ae)jk (j=1,2 k=1,9), and pe, andpe,. Using Rj inthe9

fields-of-view for the 15 mm and 8-12 nm channels used to determine h and to solve for
these 20 variables. The noise covariance matrix N used to retrieve cloud parameters,
which represents both noise in the observations and uncertainties in the computed values
of Rj cLR, istaken to beidentical to that used to determine h (Eq. 5.2.15).

Giventhen' iteration cloud parameters aé{‘k, aey, . Pot, Peo., define

— — o o)
Yik ° Ri k- Rig =(Ri k- RicLr)+ & ae?kgeRi,CLR Ri(pg. )
)=12 (5.4.37)
where Rj  isthei" channel radiance in field-of-view k (Eq. 5.4.36) and ﬁin KIS

computed from the n™ iteration parameters. This givesriseto the iterative equation
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e aeﬂR.(ﬂpc Yokl

n+1 n _ Q s n ) — m
Yik - Yik= & ZRi cLr Ri(pg)g DAE + & &g g ~uop’
j=1.2 j=12g J 2]
é é u
= a 9 "zl + & N . pl
J—l @lk Daekg 1 :1,2'3 'k'Dpc-H Cj
(5.4.38)

where the terms in brackets are the appropriate Jacobians, computed empirically as
are all other Jacobians. Note that if géjk (for all k) and/or YR; /ﬂpC_ (for all i) are small
J

for agiven pCj , the Jacobian for that cloud top pressure is small and the cloud top

pressure is contained primarily in a heavily damped mode and is not changed
significantly from the initial guess. In analysis of simulation data thus far, the second

cloud formation usually contains small amounts of low clouds, and Pcy isin genera not

well determined from the data.

For our retrievals, the first guess cloud top pressures are taken as 350 mb and 650
mb, and the first guess effective cloud fractions taken as 0.25 for each cloud type. The

solution is constrained such that Pcy 3100 mb, Pc, £ ps- 50 mb where pgisthe

surface air pressure. In addition aej  +aep ik areconstrainedtobe £1.0. If the

second cloud fraction is either set very small in the first guess, or becomes very small in

the retrieval, no useful information about the second cloud top pressure is determined.

5.4.8.6 Reglection Criteria

A number of tests are made to test whether the retrieval isrejected. The magjor cause
of rgjection is difficulty in dealing with the effects of clouds on the AIRS radiances.

5.4.8.6.1 Assessment of the Cloud-Clearing Fit.
Equations (5.2.30), (5.2.29), and (5.2.25) give the solution for the vectors h and h

and the resultant clear column radiances Iii . If asuccessful solution is produced, the
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ensemble Iii for the cloud-clearing channels should match the incoming estimates of
cloud-cleared radiances R; | gto areasonable degree. A poor match isindicative of

either a particularly poor first guess or problems in handling the effects of clouds on the
radiances. The weighted residuals of the clear-column radiances are computed, as used

in the computation of h in brightness temperature units

- SL12
o (B 2n-1 .
“a(Ri- Ri cLR"Nji™ +
DE = ¢- > + (5.4.39)
i B: ¢
g & NiilgaT—T'; -
& % o

and regject the solution if DF computed when generating Alis greater than 1.75K.

5.4.8.6.2 Difficult Cloud Cases.

Cases with extensive cloud cover and low contrast are particularly difficult to
analyze. The solution isrejected if the sum of the final retrieved cloud fractions for all
cloud layersis greater than 80% or the total cloud fraction is greater than 65% and the
noise amplification factor (see Equation 5.2.31) is greater than 2.5.

5.4.8.6.3 LargeResidualsin Second Pass Retrievals.

The generadl iterative solution is terminated when either the residual RM (Equation
5.4.23) isless than 10% of the RSS of the predicted noise for each mode dB ¢ (Equation
5.4.17) or R™ ismore than 75% of R™ " 1 siow convergence indicates a poor solution.
The solution isrejected if the converged value of R is greater than 1.75 times the root-
sum-sguare of dB ¢ in either the surface parameter retrieval or the temperature profile
retrieval in the second pass. Poor convergence generally indicates problems with the

clear column radiances R; 3.

130



AIRS Level 2 Algorithm Theoretical Basis Document Version 2.1

5.4.8.6.4 Inconsistency of Test “Microwave-Only” and Combined
Infrared/Microwave Retrievals.

Under some conditions, the cloud-cleared radiances Iii 3is poor but all convergence
tests are passed. Nevertheless, the test microwave-only retrieval produces low level
temperatures which differ significantly from those of the second passretrieval. This
generally indicates poor cloud-cleared radiances. The solution isrejected if the root-
mean-sguare differences between the temperature in the lowest 3 km of the test

microwave-only retrieval differs from that of the second pass retrieval by more than 2K.
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5.5 Tuning

To be useful for numerical forecasts, AIRS data must be consistent with data from
other sources such as radiosondes. Errorsin both the AIRS data and the other data
contribute to systematic differences between different data sets. These are removed by a
statistical adjustment procedure. There are other errorsin the AIRS data that can be
recognized in the data and removed before the tuning step. A linear shift in the detector
array isone example. For tuning, it isassumed that these corrections have been made. It
is also assumed that there exist matched pairs of radiance vectors, one calculated from
some measure of truth and one observed by AIRS. The problem isto make an

adjustment to remove the systematic differences between the two sets of data.

Before proceeding, it is useful to discuss the procedures used to calculate radiances.
Although the calculation of radiances using the procedures of Section 4 is easy once the
atmospheric state is completely specified, radiosondes and other sources of information
often provide an incomplete description of the atmospheric state. For example, a
radiosonde specifies the temperature and water vapor in the lower part of the atmosphere.
The radiances depend on these conditions as well as the conditions in upper atmosphere
and the surface skin temperature. Estimates of these conditions can be obtained from the
satellite retrieval. Values of other gases such as ozone can be obtained from the retrieval
aswell. When thisis done, the adjustment will preserve the original calculated values for
the upper atmosphere where little independent knowledge of the atmosphere is available,
but it will adjust those variables in the lower atmosphere where an independent measure
of truth isavailable. Further thisis donein away that minimizes the systematic

differences between the calculated value and the measure of truth.

551 Approach

To remove the systematic differences between the calculated and observed radiances,
one can be used to predict the other. It is common practice to use the measured radiances
to predict adjustments to the cal culated values because the data are frequently used in an
iterative retrieval procedure in which the radiances are calculated for a series of

successive iterations. By using the measured values, the adjustment needs to be done
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only once. If the calculated values are used as predictors, a new adjustment would have
to be calculated for the new estimate at each iteration. We use a constrained regression
for the adjustment. Using standard regression for the adjustment has some potential
problems. Oneisthat the regression is probably numerically unstable due to the large
number of highly correlated predictors. A second isthat unconstrained regression
coefficients are often physically unrealistic. For example, channels with weighting
functions that peak high in the atmosphere often become major predictors for channels
with weighting functions which peak near the surface. It is reasonable to expect that the
regression coefficients be slight perturbations to the identity matrix. That is, the
calculated radiance for a given channel depends on the measured radiance for that
channel, with a coefficient that is nearly unity, while the dependence on other channelsis
small. Thisisthe form one expectsfor adight error in the weighting function peak
height. The desired solution is given by the shrinkage operator (Oman et al., 1982). The
particular derivation isfound in the appendix of Croneet al. (1996). The shrinkage
estimator, C. is obtained by finding the C that minimizes the trace of [(C-C,)" (C-C,)]

subject to the constraint that the trace of [(Y -C X )(Y -CX )] is held constant and where
C,isaninitial estimate for regression coefficients, Y isthe value being predicted and

X denotes the predictors. Inour case, Y isthe adjustment, and X is the vector of

measured radiances. The shrinkage estimator can be obtained by setting the derivative

S;tellltz COIO(I:I‘?te;i Radiosonde
o ds_erve sg_te Ited calculated
radiances radiosonde radiances
* samples *
P

Cloud
cleared Calculate
radiances radiance
l differences
Calculate Calculate CaICL_IIate
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FIGURE 5.5.1 TUNING ALGORITHM FLOwW DIAGRAM
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2(C- Co)+g(-2YXT +2¢cxXTy=0 (5.5.1)
which leads to
Cs= (YXT +gCo)(XXT +gl) ! (5.5.2)

For current instruments with tens of channels, thisform of the equation is adequate.
For a high spectral resolution instrument like AIRS, the number of channels increases by
afactor of about 100. Not only does the large number of channels increase the
computations, the larger number, coupled with the fact that more channels are similar,
increases the numerical instability. The retrievals are being done with linear
transformations such as eigenvectors or “super channels’, which are averages of channels
that are highly correlated with each other, or with a subset of the channels. Many groups
of channels contain no unigque information, but can be averaged to reduce the noise. We
used eigenvector regression to suppress noise. In this procedure, only the eigenvectors
associated with the largest eigenvalues are preserved. We note that, while in general, an

equation of the form

C= (Y- CX)X"(XX")* (5.5.3)

produces regression coefficients that are equal to those given by standard |east

squares regression, this is not the case if the small eigenvalues of X X" are suppressed.
We use eigenvector regression and use only the eigenvectors associated with the larger
eigenvectors. Then, because we expect the calculated value for a channel to be the
measured value with a small correction, we set C, equal to the identity matrix, I, to give
C=(Y- X)X"(XX")* (5.5.4)

which leads to the solution

Y =(1+C)X (5.5.5)

where the values of C are small because of the eigenvector constraint. Thisisthe
form that we want. It produces a set of regression coefficients that give nearly the same

reduction in variance on the dependent set asis given by standard regression, but that
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have the desirable physical property that the calculated value for each channel is equal to
the measured value plus small corrections. Details of the procedures for doing
constrained regressions have been documented in a series of papers (McMillin et al.
1989, Crone et al. 1996, Uddstrom and McMillin 1994a, Uddstrom and McMillin
1994b). In the equations above, we have been using variables that have the mean
subtracted. When the mean isincluded, equation (5.2.5) becomes

Y =[Y - (1 +C)X]+ (I +O)X (5.5.6)

We a'so note that there may be occasions where it is desirable to have a correction
that depends on predictors other than radiances such as latitude. This can be done by
adding columnsto X sothat X has more columnsthan Y and the identity matrix has
corresponding columns of zeroes added. We add this capability because, while one
would expect the state of the atmosphere to be defined by the radiances, some current
adjustment approaches use other predictors and it is possible that some other predictors
that might lead to a more accurate adjustment. Thisis an aspect that can’t be fully
determined until launch. Theinitial system, while it allows for additional predictorsto be
added, will not use this feature.
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6 UNCERTAINTY ESTIMATES

Error estimates of AIRS products, on aretrieva-by-retrieval basis, are an important
part of the dataset. In deriving the first thermal and moisture product (section 5.3) an
error estimate is derived through the regression and minimum variance physical retrieval
using the observational noise covariance matrix (equation 5.3.33) and estimated as
thermal and moisture covariance matrix (5.3.35). This chapter deals with the fina
product (section 5.4) error estimates. Thisinvolves estimating likely sources of error and
propagating them through the retrieval process. These errors are al'so important in the
construction of the cloud-clearing noise covariance matrix M (equation 5.2.15) and the
retrieval covariance matrix M (equations 5.4.23, 5.4.24). In our discussion we
distinguish between error estimates of cloud-cleared radiances, discussed in section 5.2

and those of other “geophysical” products discussed here.

Equations (5.2.15) and (5.4.25) contain terms such as dT(P) N indicative of expected
errorsin retrieved parameters. These errors are case dependent and can be estimated by

propagating expected errors through the retrieval system. At any step in the iterative

process, the estimate of a parameter, such as T(P) ", is given by

T(P)jn:To(P)j+ka|:1FJkAE =T°(P); + (FUB"); 1. (6.1)

There are three contributions to the expected error dT(P)j. Thefirst contribution

comes from the null space error, arising from the error of the first guess in the space

outside that of the L eigenfunctions used to expand the solution. The second component
arises from errors in the coefficients B". The last contribution arises from the damping

of the solution in which (1- F ) of the first guess (or previous iteration) is believed for

each eigenfunction G.

The expected error in parameter X N d Xjn, can be expressed in terms of errorsin
J

the expansion coefficients A according to
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.1/2

® o)
dXJn :d(JN-'-Cé\é ij(dAk) :
k

2 (6.2)
(%]

where dXJ!\I isthe null space error and dA" isthe error in the coefficients A" used

to represent X N These arise from both errorsin the B coefficients and errorsin the

damped portion of thefirst guess. In every step in the iterative retrieval process, we
begin with parameters X"~ * having an uncertainty dX ' 1 The uncertainty of the first

guess is specified based on expected errors, asisthe null space error. If we knew the

signed errors of state X n- 1, dA" " 1 could be solved for exactly according to

J

@AR" hH2=FEy treax" - M) = (FE) trex " b2 63)

The magnitude of errorsin agiven state are only estimates. It is preferable to use an

analogous form which averages the estimated errors of X over pressure layersin the

trapezoid functions F to approximate dAQ 1

& Fj @k h?
- 1 i
(AR~ H? = — (64)
Fnax, k@ Fik
J

where F o isthelargest value of Fik in function k .

In agiven iteration, we can now express dArkn according to

. N
. ® an’2 ® é ul’%zul

n_=& o 2. -1,2 . U

dAf = B gUk =+ + & A- FMUFAEA] DY £ (65
e 2 |n -4 .. . ~ u
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F
where T‘]n represents the predicted error in dB? due to propagation of noise and
I

the second term represents the damped error of the previous iteration profile, with dA™" 1
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coming from Equation (6.4). Given dAE from Equation (6.5), the corresponding profile

errors for use in Equations (5.2.15), (5.4.25), and (5.4.26) are computed according to
Equation (6.2).

For moisture and ozone profile, the form of the expansion is dlightly different (see

Equation 5.4.29) and we write

dqn(P):qn-1(P§%qN(P)+\/éFk(P)(dAk)22 gm/ch
€ K 2 (6.6)

or

n € N 20
de” (P) = 100¢dq " (P) +\/é A(P)AAK)? = %
€ k e (6.7)
Equation (5.4.44) is case dependent through the parameters F y and | , which
depend on the S matrix, and more significantly on the M matrix. M contains
contributions from clouds, M , and parameter uncertainty M . The uncertainties

determined from Equations (6.3) and (6.7) in turn are used in the computation of M
(Equation 5.4.25) and N (Equation 5.2.15). The null space error istaken as 0.5K at all
levels and the first guess error is modeled as afunction of first guess type. The null space

error in percent istaken as 5% for water vapor and ozone respectively.
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7 QUALITY ASSESSMENT
Separate plans have been drafted (to be released in early 2000) to describe the AIRS

implementation of quality assessment (QA) processing for each datalevel. This section
gives abrief overview of these plansfor the level 2 processing. Thereis often confusion
when first encountering the concept of quality assessment and how thisis distinguished
from quality control, data validation, diagnostics, and retrieved parameter uncertainties.
Appropriately enough, each EOS instrument team uses quality assessment processing
quite differently. The AIRS implementation emphasizes diagnostics more than the other

elements.

AIRS guality assessment processing can be divided into two types. The first type of
quality assessment is performed within the product generation software. In the course of
data product generation, quality assessment parameters are calculated and quality
assessment results are reported. Because this quality assessment information is
calculated and collected without user intervention, it is referred to as automatic quality
assessment. During automatic quality assessment, a variety of summary statistics are
calculated which provide insight into product quality. If these summary statistics indicate
aprobable quality problem, a message is generated in the log, the product is flagged as
bad, and quality assessment personnel are notified that manual quality assessment is

required for that product.

Manual quality assessment is the second type of AIRS quality assessment and is
performed by a human operator. If automatic quality assessment indicates that a product
is bad, the DAAC first checks to see if there was some type of DAAC operational
problem (e.g., input files were not staged and were unavailable during processing). If so,
the problem is corrected and the product is re-generated. 1f no operational problemis
found, manual quality assessment is performed at the AIRS Team Leader Science
Computing Facility (TLSCF) to determine the problem and whether it can be corrected.
During manual quality assessment the archived logs may be used as ancillary
information, along with other metadata. |dentification and correction activities conducted

within investigative quality assessment are also recorded for future reference. Once these
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activities have been completed, the data product in question is marked as either good or
bad.

Thereis also a second form of manual quality assessment at the TL SCF, known as
routine quality assessment. The normal data production stream will be sampled on a
daily basisto provide an additional check on data product quality. On average, 10% of
the daily granule production will be examined, with sampling criteria supplied by the
AIRS Science Team.

Theresult of Level 2 Quality Assessment is a set of parameters describing retrieval
algorithms *health.” The retrieval algorithm may fail in a number of ways, including
complete breakdown of one or several parts of the retrieval process (e. g. the microwave-
only retrieval). Alternatively, individual retrieval processes may run to completion but
with some unusual computational characteristics (e. g. final retrieval converges only
after very many iterations). Additionally, quality assessment information from Level 1A
and Level 1B processing may affect retrieval algorithm functioning. Thisinformation
must be propagated forward to the retrieval. An example of such a situation would be
when fewer than nine AIRS spectra (but a sufficient number for cloud-clearing) are
available from Level 1B. The most detailed quality assessment information is propagated
into the Level 2 Quality Assessment Support Product, produced only when diagnostic
options are switched on in the product generation executive. It isintended to be produced
at the AIRS TL SCF to aid with problem-solving.

Many small quality assessment fields are included in al AIRS products. For each
profile there are flags of processing paths taken and continuous variables reflecting such
parameters as speed and quality of algorithm convergence. At agranulelevel, quality
assessment fields include counts of per-profile flags and statistics of per-profile
continuous variables. Some of these granule-level quality assessment fields will be used

as Product-Specific Attributes so they can be used in ordering interesting data.
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8 IMPLEMENTATION OVERVIEW

8.1 AIRS Science Data Processing System
The core of AIRS Science Data Processing System (SDPS) has been designed

around several execution units or Product Generation Executables (PGES); each tailored
to process a particular level of datafor AIRS, AMSU, HSB and VIS instruments. The
Figure 8.1 shows a high level architecture of the AIRS SDPS.

The high level capabilities of these PGEs are:
L1A PGEs. decommutation, data-number to engineering unit conversion of

engineering & geolocation
L1B PGEs: Radiance conversion with appropriate corrections
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L2 PGE: retrieva of cloud, surface & atmospheric state
Each PGE can be run independently of each other, including the Level 2 PGE where
options exist to process through to any desired stage (e.g., microwave, first, or final
retrievals). Not shown are additional PGEs. Thefirst group are designed to provide
summary or subset of the data products to create Browse images to facilitate data
ordering. The second, referred to as the RaObs PGE, is designed to accumulate matchups
between coincident radiosonde and AIRS observations for tuning (see Section 5.5).

8.2 Data Storage and Data Processing Requirements
The AIRS SDPS requires approximately 73 GB of archive per day. Table below
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FIGURE 8.1 — HIGH LEVEL REPRESENTATION OF THE AIRS SDPS ARCHITECTURE OF PGES.
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summarizes the various categories of datarequired for processing as well as data
produces by the AIRS SDPS.

Data Product Type Volume
Level O data (primary input) 13 GB/day
Aviation forecast .03 GB/day
Radiosonde data .08 GB/day
Level 1A products 17 GB/day
Level 1B products 34 GB/day
Level 2 products 8 GB/day
Raobs matchup file .03 GB/day
Browsefiles 4 GB/day

Total 72.54 GB/day

Level 0 data: 54 MB per 6 minutes (granule) of data. Total per day is: 54* 240 or 12.96
GB.

L1A data: 70 MB of level 1A for one granule of AIRS, HSB, AMSU, and VIS combined.
Total per day is 70*240 or 16.8 GB.

L1B data: 138 MB of level 1B for one granule of AIRS, HSB, AMSU, and VIS
combined. Total per day is 138* 240 or 33.12 GB.

L2: 32 MB of output per granule. Total per day is 32*240 or 7.68 GB

8.3 Required input data
Geolocated, Calibrated Observed Radiances provided by L1B processing:

AMSU-A
HSB

IRS

VIS

Static Ancillary Data files provided by TLSCF:

Decommutation Map

Constant Sets

Red and Y ellow Limits

Namelist giving default values for L2 parameters
AMSU and HSB Sidelobe Correction Matrices

AMSU and HSB Sunglint Data

AMSU and HSB Cold Sidelobe Interpolation Arrays
Lists of Channelsto be used at various stages of retrieval
Calibration Parametersfor AMSU, HSB, AIRSand VIS
AIRS Channels Frequency List

AIRS Channels Focal Plan Map

AIRS Correction Parameters and Spectral Features
Climatology to set initial guess profiles

Topographic data
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Transmittances for AMSU, HSB and AIRS channels
Angle Correction Coefficients

Solar Radiances

Tuning Coefficients

Microwave Emissivity Coefficients

Ancillary Error Estimates

Covariance Matrices

Eigenvector Matrices

Radiance Regeneration Eigenvectors

Tables of Contribution Weighting Functions

MW to IR regression coefficients

Principal Component Mode Regression Coefficients
Principle Components for Angle Adjustment

Dynamic and Static External Ancillary Data Files provided at the DAAC:

NCEP 1-Degree Aviation Model (AVN) Product

Globa 1 KM DEM

Quality Controlled Radiosonde observations, including ship/buoy observations
Third Generation V egetation Index

8.4 Simulation System

The architecture of the AIRS SDPS simulation system and itsrole in validation and
verification of AIRS productsis shown in the following figure 8.2. The current software
hasafull level Oto level 2 data product simulation with three goalsin mind: (1) core
algorithm performance is based on the simulation, (2) robustness testing of the AIRS data
product algorithms is based partly on simulation, (3) data product validation requires an
extensive simulation effort. The ssimulations are to be as realistic and challenging as

possible as well as extensive enough to provide a complete set of exception conditions.

144



AIRS Level 2 Algorithm Theoretical Basis Document Version 2.1

FIGURE 8.2 — THE AIRS SIMULATION SYSTEM INCLUDES SIMULATORS TO GENERATE
APPROPRIATE DATA FOR EVERY LEVEL

Early development used simulations based on 4 orbital tracks, each of approximately
aquarter orbit in length. Algorithm performance and simple testing has moved to focus
on using a number of shorter data granules of pairs of AMSU scanlines or 6 AIRS
scanlines (an AIRS data granule is normally 135 AIRS scanlines) with simple changes to
represent various geophysical conditions (noise-free, noisy, clear, cloudy, ocean, land,
etc.). These simulations of AIRS/AMSU/HSB observations are based on the NCEP eta
model forecast for November 5, 1996. Up to two cloud formations were present in each
AIRS footprint with cloud amounts and cloud top pressures predicted by the GCM. The
cloud top pressures and amounts varied between the nine AIRS footprints encompassed
in the single AMSU footprint for which aretrieval was performed. All other geophysical
parameters, including surface spectral emissivity and bi-directional reflectance, varied as
well. Results are shown for the average of six scan lines with latitudes and longitudesin
the vicinity of 11N, 80E; 28N, 110W, and ON, 116W. Average cloud fractionsin asingle
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AMSU footprint ranged from 1% to 69%. All cases were accepted by the rejection
criteriadescribed in section 5.4.8.6

Figure 8.3 shows RMS layer mean temperature errorsin roughly 1 km layers
between the surface and 200 mb and 3 km layers above. Results are shown for the
microwave product, the AIRS regression, the first product retrieval and the final product
retrieval. Also indicated on the plot are the errors in surface skin temperature as well as
the average RM S error in layers from 100 mb to the surface (called trop) and 700 mb to
the surface. The microwave product has large errors beneath 500 mb, where the intrinsic
vertical solution ispoor. The AIRS regression guess improves over the microwave
retrieval in the mid- lower troposphere but still has 2 K errors near the surface, with an
average error in the lower troposphere of 1.51 K, compared to 2.67 K for the microwave
retrieval. Thefirst product retrieval significantly improves on the regression results,
especialy beneath 200 mb. While thisisthe portion of the atmosphere where results are
most affected by clouds, both the regression and first product results use the same cloud
cleared radiances, based on the first estimate of eta. The first product has an average
RMS error of 1.0 K in the lower troposphere, but an error of 1.42 K in the lowest 1 km
layer. Thefinal product retrieval, which benefits from the use of improved cloud cleared
radiances, further improves on the first product retrieval, with a lower tropospheric
temperature error of 0.82 K, and avalue in the lowest 1 km of roughly 1 K. Results
above 100 mb are also roughly 0.2 K better in the final product retrieval compared to the
first product.
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Figure 8.4 shows results for the water vapor profile. Vaues shown are for layer
precipitable water in roughly 2 km layers between the surface and 200 mb, plus results
for the layer between 200 mb on the top of the atmosphere. Also indicated in the figure
isthe error in total precipitable water. The microwave product has an error in total
precipitable water of 6.8%. 2 km layer errors are typically in the range 10%-25%, with
the exception of water vapor between 300 mb and 400 mb, and above 200 mb. The AIRS
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FIGURE 8.3 COMPARISON OF RETRIEVAL PERFORMANCE IN ATMOSPHERIC
TEMPERATURE AT EACH STAGE FROM MICROWAVE-ONLY (SECTION 5.1), FIRST
PRODUCT REGRESSION AND FIRST PRODUCT PHYSICAL RETRIEAVL (SECTION 5.3),
AND THE FINAL PRODUCT PHYSICAL RETRIEVAL (SECTION 5.4)

regression and first product are poorer than the microwave product with regard to total

precipitable water and water in the lowest 2 km, but significantly improve on the
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microwave result at higher levels of the atmosphere. The first product is also significantly
more accurate than the regression guess above 800 mb. Thefinal product hasRMS
errors better, or slightly poorer, than 15% at all levelsin the atmosphere and is
comparable to the microwave product with regard to errors in total precipitable water and

water vapor in the lowest 2 km.
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FIGURE 8.4 COMPARISON OF RETRIEVAL PERFORMANCE IN ATMOSPHERIC
HUMIDITY AT EACH STAGE FROM MICROWAVE-ONLY (SECTION 5.1), FIRST
PRODUCT REGRESSION AND FIRST PRODUCT PHYSICAL RETRIEAVL (SECTION
5.3), AND THE FINAL PRODUCT PHYSICAL RETRIEVAL (SECTION 5.4)

For robustness testing, awhole day of global datais being simulated to provide 240
full-sized AIRS granules. Thisisintended to help prepare the Science Team for on-orbit
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validation activities where similar volumes of datawill be needed, and test the quality

assessment process and the algorithm robustness.

The full day simulation has been centered on September 13, 1998. This was selected
for no other reason than it coincided with a CAMEX-3 aircraft flight under fair weather
conditions and there are contemporaneous NOAA-15 AMSU-A and —B measurements
available. The simulation activity begins with a generation of level 2 “truth” data, which
actually span the time of 03:00 of 13 September 1998 through 03:00 of 14 September
1998. Thisdataislinearly interpolated in time, bilinearly interpolated in the horizontal,
and linearly interpolated in log-pressure from the 3-, 6-, and 9-hr forecasts of the
Aviation run of the NCEP weather forecasting model. The UARS upper atmosphere
climatology was used for the mid-stratosphere through the mesosphere, and hypothetical
models were prescribed for the distribution of trace gases carbon dioxide, carbon
monoxide, and methane. Since the Aviation run of the NCEP model does not forecast
cloud liquid water content (for this epoch), an approximate formula based on cloud-type
and cloud height is used to simulate liquid water content. The topography, land fraction,
and viewing geometry are all defined using the PGE toolkit. Since the toolkit-generated
topography differs from the NCEP surface geopotential height, the surface pressure was
adjusted adiabatically based on the forecast surface air temperature. The ground surface
temperature remained unchanged. Results from testing the latest version of the Level 2
PGE are expected in early 2000.

8.5 Data Product Validation
A separate AIRS Validation Plan describes the detailed approach for AIRS data

product validation. AIRS product validation activities are intertwined with instrument
calibration and retrieval algorithm. The former are described in the AIRS Calibration
Plan. Calibrated radiances and retrieved quantities from the AIRS system are the result
of acomplex flow of datafrom the suite of AIRS/AMSU/HSB instruments and through
the data processing software. There are potential sources of uncertainty at many pointsin
thisflow, and all can corrupt the quantities ascribed geophysical significance. Additional

uncertainties come from incomplete knowledge of the spectral information used in the
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infrared and microwave forward radiance models (See Chapter 4.0). The ultimate
objective of validation isto establish the validity of the absolute value of the reported
geophysical parameters and equally importantly, their associated error bars.

Thefirst stage in validation occurs before launch through instrument calibration and
testing, accompanied by algorithm testing with simulated data. To first order these
activities establish the baseline from which on-orbit performance of the AIRS suite of

instruments can be validated.

In the early period of on-orbit operations for the second stage of validation, the AIRS
team will use geophysical observations from many sources to provide a qualitative
understanding of the instruments and processing system performance. Although, these
vicarious observations are sometimes referred to as ‘truth’, they in fact have their own
uncertainties that must be taken into consideration. The AIRS team has identified
vicarious observations presumed to be reasonably well understood. The most important
of these include:

radiosonde observations of atmospheric temperature
buoy measurements of sea surface temperature
ARM-CART site observations

MODIS (EOS-Aqua) observations
and CERES (EOS-Aqua) measurements

The latter two will be partially validated from their EOS-Terra observations, so that
we will have some understanding of their performance on EOS-Aqua. This places bounds
on the bias and variance of any residuals found in the comparisons of vicarious and AIRS
observations. When conditions of unexpectedly large uncertainty are encountered, they
are taken as a probable indicator of problems of one of several types. poor instrument
calibration, spectroscopic uncertainty in the forward model, incorrectly parameterized
physicsin the cloud clearing, and incorrect convergence within the retrieval algorithm.
Identifying and correcting these error sources will be the major activity of the AIRS

Science Team in thefirst year or more of AIRS operations.

The simplest AIRS measurements to be examined first are those obtained of cloud-

free ocean scenes. Thiswill eliminate dependence on cloud-clearing and minimize
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surface inhomogeneity effects on the observed radiance spectrum. From there, the next
set of observations to be studied will include cloudy ocean scenes, then cloud-free land
scenes, and finally cloudy land scenes.

Only after most of the instrument and software errors have been corrected will the
third stage of validation begin. This stage involves validating the reported error bars
associated with the AIRS data products. These numbers are essential for AIRS data users
in any research or operational sense. These require a sufficiently large ensemble of

colocated, coincident measurements to be statistically significant.
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ABBREVIATIONS AND ACRONYMS

AERI Atmospheric Emitted Radiance Interferometer

AIRS Atmospheric Infrared Sounder

AMSU Advanced Microwave Sounding Unit

AMSU-A Advanced Microwave Sounding Unit-A (a 20 channel microwave
radiometer)

AMSU-B Advanced Microwave Sounding Unit-B (a 5 channel microwave
radiometer)

AVHRR

C degrees Centigrade

COLR Clear Sky Outgoing Radiation

DAAC Distributed Active Archive Center

DB, dB decibel

EOF Empirical Orthogonal Functions

EOS Earth Observing System

ER-2 Earth Research-2 (NASA's civilian version of the Lockheed Skunkworks
U-2)

ESDIS Earth Science Distributed Information System

GHz Gigahertz (10° Hertz, or cycles/second)

GSFC Goddard Space Flight Center

HITRAN High Resolution Transmission Molecular Absorption Database

HSB Humidity Sounder of Brazil

IR InfraRed

JPL Jet Propulsion Laboratory

K degrees Kelvin

km kilometer (10° meters)

kPa kilopascal (10° pascal, equivalent to 10 bar)

LO-L4 Level O through level 4 (processing)

MHS Microwave Humidity Sounder

mm micrometer, micron (10° meter)

MODIS M oderate Resolution Imaging Spectroradiometer
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MPM87
MPM89
MPM92
MPM93
MSU
MW
NASA
NCEP
NEDT
NEDT
NEMS
NESDIS
NEXRAD
NOAA
OLR
RH
SDPS
SIRS
SSM/T2
THz
TIGR
TIROS
TLSCF
TOVS
VTPR

AIRS Level 2 Algorithm Theoretical Basis Document Version 2.1

Millimeter-wave Propagation Model (Liebe and Layton, 1987)
Millimeter-wave Propagation Model (Liebe, 1989)
Millimeter-wave Propagation Model (Liebe, et a, 1992)
Millimeter-wave Propagation Model (Liebe, et al, 1993)
Microwave Sounder Unit

MicroWave

National Aeronautics and Space Administration
National Center for Environmental Prediction

Noise Equivalent Temperature Difference

Noise Equivalent Temperature Difference

Nimbus-E Microwave Sounder

National Environmental Satellite Data and Information Service
Next Generation Radar

National Oceanic and Atmospheric Administration
Outgoing Longwave Radiation

Relative Humidity

Science Data Processing System

Satellite Infrared Radiation Spectrometer

Specia Sensor Microwave/Water Vapor Profiler
terahertz (10* Hertz)

TOVSInitial Guess Retrieval

Television Infrared Observation Satellite

Team Leader Science Computing Facility

TIROS Operational Vertical Sounder

Vertical Temperature Profile Radiometer
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